机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务在城市规划中,如何根据不同地区的地理特征来制定有效的规划方案是一个关键问题。不同区域的需求和规律是不同的,因此我们必须考虑到地理空间的差异性。本期博客将介绍如何结合机器学习方法,利用地理加权聚类(Geographically Weighted Clustering)和半参数地理加权回归(Semi-Parametric Geographically Weighted Regression, SPGWR)来实现城市规划中的区域带宽不同的任务。