windows下安装anaconda、pycharm、cuda、cudnn、PyTorch-GPU版本

目录

一、anaconda安装及虚拟环境创建

1.anaconda的下载

2.Anaconda的安装

3.创建虚拟环境

[3.1 环境启动](#3.1 环境启动)

[3.2 切换镜像源](#3.2 切换镜像源)

3.3环境创建

[3.4 激活环境](#3.4 激活环境)

3.5删除环境

二、pycharm安装

1.pycharm下载

2.pycharm的安装

三、CUDA的安装

1.GPU版本和CUDA版本、cudnn版本、显卡驱动的对应关系

1.1先查看一下自己的显卡

1.2cuda和驱动对照表

1.3下载cuda

1.4cuda的安装

四、CUDNN的安装

1.cudnn的下载

1.2cudnn的安装

五、pytorch的安装

1.1使用pytorch官网进行安装

1.2.pytorch验证


一、anaconda安装及虚拟环境创建

1.anaconda的下载

Anaconda官网:https://www.anaconda.com

清华大学开源镜像下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

anaconda可以通过以上两种方式进行下载,通过anaconda的官网下载的是最新版,这里面有个问题是python版本一般是最新的,也就是生成的conda的base环境的python版本是最新的,这个好像是无法降级的,我尝试过很多版本都无法完成,不过不影响大局,我们可以创建自己的环境来安装适合自己版本的python。

2.Anaconda的安装

这个相对简单,基本就是下一步就可以了,由于安装时没有截图,暂时放一个csdn的链接吧

(121条消息) Anaconda安装教程(超详细版)_安装anaconda_EEdith的博客-CSDN博客

3.创建虚拟环境

由于安装后conda自带的环境可能不适合我们的需要,所以一般是需要创建一个或者多个虚拟环境的。先给出几个常用的命令:

语法 功能
conda --version 查看conda版本号
python --version 查看python版本号
conda info --envs 查看虚拟环境列表
conda create -n virtualname pip python=3.6 创建虚拟环境,指定python版本号
conda activate virtualname 激活虚拟环境
conda deactivate 退出虚拟环境
conda remove --name virtualname --all 删除虚拟环境

3.1 环境启动

conda环境是通过开始菜单中的程序启动,具体如下图:

启动后如下:

3.2 切换镜像源

直接下载的话会受很多限制,下载速度会非常满,一般需要先切换镜像源,国内镜像源比较多,一般使用比较多的还是清华镜像源,如果有问题可以到网上查找其他的,暂时先放置清华的,具体命令如下:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

切换其它镜像源之前一定要先回复默认,命令如下:

conda config --remove-key channels

3.3环境创建

环境创建需要注意的有两点,一个是环境名称,这个可以根据自己的需要设定,第二个是python的版本,我们这里需要安装的是3.7的版本。

conda create -n virtualname pip python=3.7

3.4 激活环境

3.5删除环境

删除环境的语句也记录一下,后面一定要加all

conda remove -name virtualname --all

二、pycharm安装

1.pycharm下载

pycharm官网:下载PyCharm:JetBrains为专业开发者提供的Python IDE

关于pycharm的激活暂时在这就不讲了。

2.pycharm的安装

关于pycharm的安装也放个搜到的网址吧。

(121条消息) PyCharm安装教程_小白学CS的博客-CSDN博客

三、CUDA的安装

1.GPU版本和CUDA版本、cudnn版本、显卡驱动的对应关系

1.1先查看一下自己的显卡

nvidia-smi

这里重点关注一下显卡的驱动,后面需要在官网找对应的cuda版本

1.2cuda和驱动对照表

通过下面网址查找对照

CUDA 12.2 Release Notes (nvidia.com)

1.3下载cuda

进入cuda官网,选择适合自己驱动的cuda版本,我这里开始选择的是12.2,后面经过安装tensorflow和pytorch发现这个版本高了,还要降,所以要提前选择适合自己的才可以,这里暂时以11.8为例。

cuda官网下载:CUDA Toolkit Archive | NVIDIA Developer

1.4cuda的安装

没有截图,基本就是下一步就可以了,也发一个搜到的网址吧

windows下cuda的安装 - wenglabs - 博客园 (cnblogs.com)

四、CUDNN的安装

1.cudnn的下载

在官网选择对应的cudnn版本,这个版本首先要和cuda对应,然后如果安装tensorflow的话还要和tensorflow对应

官网: cuDNN Download | NVIDIA Developer

cudnn对照:

tensorflow对照网址:Build from source on Windows | TensorFlow (google.cn)

根据上面的对照找到适合自己的cudnn,然后进行下载

1.2cudnn的安装

下载下来是个压缩包,解压后,里面有三个文件夹,

复制 cuDNN 目录下的文件到 CUDA 的对应版本的目录下,我这安装了几个版本,所以就截了一个11.2的图。

完成后添加环境变量,把C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib\x64 加到path 中

五、pytorch的安装

1.1使用pytorch官网进行安装

打开官网,选择对应版本后会自动生成执行语句,在对应的conda环境中执行就可以了。

Start Locally | PyTorch

注意:如果已经安装过pytorch的cpu版本的话需要先手动删除然后再安装,否则会不成功。

1.2.pytorch验证

使用以下语句进行验证,返回为true,则为成功,false的话需要检查驱动和cuda还有cudnn还有torch间的兼容性。

import torch

print(torch.version)

print(torch.cuda.is_available())

至此安装完成。

相关推荐
人工智能训练16 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming16816 小时前
python性能优化方案研究
python·性能优化
源于花海17 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
码云数智-大飞17 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
DisonTangor18 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫198218 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了18 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx18 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队18 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
极客数模19 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab