windows下安装anaconda、pycharm、cuda、cudnn、PyTorch-GPU版本

目录

一、anaconda安装及虚拟环境创建

1.anaconda的下载

2.Anaconda的安装

3.创建虚拟环境

[3.1 环境启动](#3.1 环境启动)

[3.2 切换镜像源](#3.2 切换镜像源)

3.3环境创建

[3.4 激活环境](#3.4 激活环境)

3.5删除环境

二、pycharm安装

1.pycharm下载

2.pycharm的安装

三、CUDA的安装

1.GPU版本和CUDA版本、cudnn版本、显卡驱动的对应关系

1.1先查看一下自己的显卡

1.2cuda和驱动对照表

1.3下载cuda

1.4cuda的安装

四、CUDNN的安装

1.cudnn的下载

1.2cudnn的安装

五、pytorch的安装

1.1使用pytorch官网进行安装

1.2.pytorch验证


一、anaconda安装及虚拟环境创建

1.anaconda的下载

Anaconda官网:https://www.anaconda.com

清华大学开源镜像下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

anaconda可以通过以上两种方式进行下载,通过anaconda的官网下载的是最新版,这里面有个问题是python版本一般是最新的,也就是生成的conda的base环境的python版本是最新的,这个好像是无法降级的,我尝试过很多版本都无法完成,不过不影响大局,我们可以创建自己的环境来安装适合自己版本的python。

2.Anaconda的安装

这个相对简单,基本就是下一步就可以了,由于安装时没有截图,暂时放一个csdn的链接吧

(121条消息) Anaconda安装教程(超详细版)_安装anaconda_EEdith的博客-CSDN博客

3.创建虚拟环境

由于安装后conda自带的环境可能不适合我们的需要,所以一般是需要创建一个或者多个虚拟环境的。先给出几个常用的命令:

语法 功能
conda --version 查看conda版本号
python --version 查看python版本号
conda info --envs 查看虚拟环境列表
conda create -n virtualname pip python=3.6 创建虚拟环境,指定python版本号
conda activate virtualname 激活虚拟环境
conda deactivate 退出虚拟环境
conda remove --name virtualname --all 删除虚拟环境

3.1 环境启动

conda环境是通过开始菜单中的程序启动,具体如下图:

启动后如下:

3.2 切换镜像源

直接下载的话会受很多限制,下载速度会非常满,一般需要先切换镜像源,国内镜像源比较多,一般使用比较多的还是清华镜像源,如果有问题可以到网上查找其他的,暂时先放置清华的,具体命令如下:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

切换其它镜像源之前一定要先回复默认,命令如下:

conda config --remove-key channels

3.3环境创建

环境创建需要注意的有两点,一个是环境名称,这个可以根据自己的需要设定,第二个是python的版本,我们这里需要安装的是3.7的版本。

conda create -n virtualname pip python=3.7

3.4 激活环境

3.5删除环境

删除环境的语句也记录一下,后面一定要加all

conda remove -name virtualname --all

二、pycharm安装

1.pycharm下载

pycharm官网:下载PyCharm:JetBrains为专业开发者提供的Python IDE

关于pycharm的激活暂时在这就不讲了。

2.pycharm的安装

关于pycharm的安装也放个搜到的网址吧。

(121条消息) PyCharm安装教程_小白学CS的博客-CSDN博客

三、CUDA的安装

1.GPU版本和CUDA版本、cudnn版本、显卡驱动的对应关系

1.1先查看一下自己的显卡

nvidia-smi

这里重点关注一下显卡的驱动,后面需要在官网找对应的cuda版本

1.2cuda和驱动对照表

通过下面网址查找对照

CUDA 12.2 Release Notes (nvidia.com)

1.3下载cuda

进入cuda官网,选择适合自己驱动的cuda版本,我这里开始选择的是12.2,后面经过安装tensorflow和pytorch发现这个版本高了,还要降,所以要提前选择适合自己的才可以,这里暂时以11.8为例。

cuda官网下载:CUDA Toolkit Archive | NVIDIA Developer

1.4cuda的安装

没有截图,基本就是下一步就可以了,也发一个搜到的网址吧

windows下cuda的安装 - wenglabs - 博客园 (cnblogs.com)

四、CUDNN的安装

1.cudnn的下载

在官网选择对应的cudnn版本,这个版本首先要和cuda对应,然后如果安装tensorflow的话还要和tensorflow对应

官网: cuDNN Download | NVIDIA Developer

cudnn对照:

tensorflow对照网址:Build from source on Windows | TensorFlow (google.cn)

根据上面的对照找到适合自己的cudnn,然后进行下载

1.2cudnn的安装

下载下来是个压缩包,解压后,里面有三个文件夹,

复制 cuDNN 目录下的文件到 CUDA 的对应版本的目录下,我这安装了几个版本,所以就截了一个11.2的图。

完成后添加环境变量,把C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib\x64 加到path 中

五、pytorch的安装

1.1使用pytorch官网进行安装

打开官网,选择对应版本后会自动生成执行语句,在对应的conda环境中执行就可以了。

Start Locally | PyTorch

注意:如果已经安装过pytorch的cpu版本的话需要先手动删除然后再安装,否则会不成功。

1.2.pytorch验证

使用以下语句进行验证,返回为true,则为成功,false的话需要检查驱动和cuda还有cudnn还有torch间的兼容性。

import torch

print(torch.version)

print(torch.cuda.is_available())

至此安装完成。

相关推荐
AndrewHZ12 分钟前
【图像处理基石】GIS图像处理入门:4个核心算法与Python实现(附完整代码)
图像处理·python·算法·计算机视觉·gis·cv·地理信息系统
掘金安东尼16 分钟前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN666822 分钟前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费32 分钟前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack35 分钟前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒42 分钟前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
帮帮志43 分钟前
目录【系列文章目录】-(关于帮帮志,关于作者)
java·开发语言·python·链表·交互
MicroTech20251 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
熊文豪1 小时前
Windows安装RabbitMQ保姆级教程
windows·分布式·rabbitmq·安装rabbitmq
喜欢吃豆1 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统