yolo txt 转 labelme json 格式

talk is cheap show me the code!

复制代码
def convert_txt_to_labelme_json(txt_path, image_path, output_dir, image_fmt='.jpg'):
    # txt 转labelme json
    # 将yolo的txt转labelme json
    txts = glob.glob(os.path.join(txt_path, "*.txt"))
    for txt in txts:
        labelme_json = {
            'version': '4.5.7',
            'flags': {},
            'shapes': [],
            'imagePath': None,
            'imageData': None,
            'imageHeight': None,
            'imageWidth': None,
        }
        txt_name = os.path.basename(txt)
        image_name = txt_name.split(".")[0] + image_fmt
        labelme_json['imagePath'] = image_name
        image_name = os.path.join(image_path, image_name)
        if not os.path.exists(image_name):
            raise Exception('txt 文件={},找不到对应的图像={}'.format(txt, image_name))
        image = cv2.imdecode(np.fromfile(image_name, dtype=np.uint8), cv2.IMREAD_COLOR)
        h, w = image.shape[:2]
        labelme_json['imageHeight'] = h
        labelme_json['imageWidth'] = w
        with open(txt, 'r') as t:
            lines = t.readlines()
            for line in lines:
                content = line.split(' ')
                label = content[0]
                object_width = float(content[3])
                object_height = float(content[4])
                top_left_x = (float(content[1]) - object_width / 2) * w
                top_left_y = (float(content[2]) - object_height / 2) * h
                bottom_right_x = (float(content[1]) + object_width / 2) * w
                bottom_right_y = (float(content[2]) + object_height / 2) * h
                shape = {
                    'label': str(label),
                    'group_id': None,
                    'shape_type': 'rectangle',
                    'flags': {},
                    'points': [
                        [float(top_left_x), float(top_left_y)],
                        [float(bottom_right_x), float(bottom_right_y)]
                    ]
                }
                labelme_json['shapes'].append(shape)
            json_name = txt_name.split('.')[0] + '.json'
            json_name_path = os.path.join(output_dir, json_name)
            fd = open(json_name_path, 'w')
            json.dump(labelme_json, fd, indent=4)
            fd.close()
            print("save json={}".format(json_name_path))

附 Yolo 坐标系格式: https://roboflow.com/formats/yolov5-pytorch-txt

相关推荐
java1234_小锋8 小时前
[免费]基于Python的YOLO深度学习垃圾分类目标检测系统【论文+源码】
python·深度学习·yolo·垃圾分类·垃圾分类检测
AI棒棒牛9 小时前
论文精读系列:Retinanet——目标检测领域中的SCI对比实验算法介绍!可一键跑通的对比实验,极大节省小伙伴的时间!!!
yolo·目标检测·计算机视觉·对比实验·1024程序员节·创新·rtdter
遇雪长安10 小时前
深度学习YOLO实战:4、模型的三要素:任务、类别与规模
人工智能·深度学习·yolo
侯喵喵15 小时前
Jetson orin agx配置ultralytics 使用docker或conda
yolo·docker·1024程序员节·ultralytics
tainshuai1 天前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
飞翔的佩奇1 天前
【完整源码+数据集+部署教程】【运动的&足球】足球场地区域图像分割系统源码&数据集全套:改进yolo11-RFAConv
前端·python·yolo·计算机视觉·数据集·yolo11·足球场地区域图像分割系统
好好研究1 天前
JAVAEE知识整理之AJAX、JSON
ajax·java-ee·json·1024程序员节
夏天是冰红茶1 天前
恶劣天气目标检测IA-YOLO
yolo·目标检测·目标跟踪
MavenTalk1 天前
如何根据不同的场景选择YOLO相应的基座模型
python·yolo·yolo11n·yolo11m·yolo11s·yolo11x
LiJieNiub1 天前
深入解析 YOLOv5 datasets.py:数据加载与增强的核心逻辑
yolo