Flink多流处理之connect拼接流

Flink中的拼接流connect的使用其实非常简单,就是leftStream.connect(rightStream)的方式,但是有一点我们需要清楚,使用connect后并不是将两个流给串联起来了,而是将左流和右流建立一个联系,作为一个大的流,并且这个大的流可以使用相同的逻辑处理leftStreamrightStream,也可以使用不同的逻辑处理leftStreamrightStream.

如下图:

下面的演示代码也可以通过这个图结合来看,其实connect算子最主要的作用就是共享状态,如常用的广播状态.

  • 代码
java 复制代码
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;

import java.util.Arrays;

/**
 * @Author: J
 * @Version: 1.0
 * @CreateTime: 2023/8/7
 * @Description: 多流操作-流连接
 **/
public class FlinkConnect {
    public static void main(String[] args) throws Exception {
        // 构建流环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 设置并行度
        env.setParallelism(3);
        // 添加数据源1
        DataStreamSource<String> sourceStream1 = env.fromCollection(Arrays.asList("a", "b", "c", "d"));
        // 添加数据源2
        DataStreamSource<Double> sourceStream2 = env.fromCollection(Arrays.asList(22.2, 11.0, 6.0, 98.0, 100.0));

        // 拼接数据流
        ConnectedStreams<String, Double> connectedStream = sourceStream1.connect(sourceStream2);

        // 这里使用map算子作为演示
        SingleOutputStreamOperator<String> resultStream = connectedStream.map(new CoMapFunction<String, Double, String>() {
            /**
             * map1作为左流
             **/
            @Override
            public String map1(String value) throws Exception {
                return "字符串: " + value;
            }

            /**
             * map2作为右流
             **/
            @Override
            public String map2(Double value) throws Exception {
                return "数字: " + (value * 100);
            }
        });

        // 打印结果
        resultStream.print();

        env.execute("Connect Operator");
    }
}
  • 结果

    3> 字符串: b
    1> 数字: 600.0
    2> 字符串: a
    3> 数字: 1100.0
    2> 数字: 2220.0
    2> 字符串: d
    2> 数字: 9800.0
    3> 数字: 10000.0
    1> 字符串: c

相关推荐
武子康36 分钟前
大数据-143 ClickHouse 实战MergeTree 分区/TTL、物化视图、ALTER 与 system.parts 全流程示例
大数据·后端·nosql
Hello.Reader38 分钟前
用 Spark Shell 做交互式数据分析从入门到自包含应用
大数据·数据分析·spark
qq_12498707532 小时前
基于hadoop的电商用户行为分析系统(源码+论文+部署+安装)
大数据·hadoop·分布式·毕业设计
电商API_180079052472 小时前
从客户需求到 API 落地:淘宝商品详情批量爬取与接口封装实践
大数据·人工智能·爬虫·数据挖掘
临风赏月3 小时前
Hadoop、Kafka、Flink、Spark、Hive五大组件运维常用操作命令
hadoop·flink·kafka
杨超越luckly3 小时前
HTML应用指南:利用POST请求获取全国爱回收门店位置信息
大数据·前端·python·信息可视化·html
呆呆小金人4 小时前
SQL视图:虚拟表的完整指南
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
梦里不知身是客114 小时前
Spark介绍
大数据·分布式·spark
啊吧怪不啊吧4 小时前
SQL之表的查改(下)
大数据·数据库·sql
猫猫姐姐12 小时前
Flink基于Paimon的实时湖仓解决方案的演进
大数据·flink·湖仓一体