概述
设计模式是针对软件开发中经常遇到的一些设计问题,总结出来的一套解决方案或者设计思路。
大部分设计模式要解决的都是代码的可扩展性问题。
对于灵活多变的业务,需要用到设计模式,提升扩展性和可维护性,让代码能适应更多的变化;
设计模式的核心就是,封装变化,隔离可变性
设计模式解决的问题:
- 创建型设计模式主要解决"对象的创建"问题,创建和使用代码解耦;
- 结构型设计模式主要解决"类或对象的组合或组装"问题,将不同功能代码解耦;
- 行为型设计模式主要解决的就是"类或对象之间的交互"问题。将不同的行为代码解耦,具体到观察者模式,它是将观察者和被观察者代码解耦。
设计模式关注重点: 了解它们都能解决哪些问题,掌握典型的应用场景,并且懂得不过度应用。
经典的设计模式有 23 种。随着编程语言的演进,一些设计模式(比如 Singleton)也随之过时,甚至成了反模式,一些则被内置在编程语言中(比如 Iterator),另外还有一些新的模式诞生(比如 Monostate)。
创建型模式主要解决类或对象的组合或组装问题,是从程序的结构上实现松耦合,从而可以扩大整体的类结构,用来解决更大的问题。
结构型设计模式是一组用于解决对象和类之间的组织关系、复杂性和交互问题的设计模式。它们主要关注如何通过类和对象的组合来形成更大的结构,并提供了灵活的方式来实现系统的组件之间的通信和协作。结构型设计模式主要解决以下问题:
- 对象之间的接口和实现分离:结构型设计模式可以帮助将抽象与实现分离,使得对象之间的接口更加清晰和可扩展。例如,适配器模式可以将不兼容的接口转换为统一的接口,使得不同类之间的交互更加简单。
- 类之间的关系管理:结构型设计模式提供了一种有效的方式来管理类之间的关系,以确保系统的灵活性和可维护性。例如,装饰器模式允许在运行时动态地为对象添加功能,而不必修改原始类的结构。
- 对象的组合和组件化:结构型设计模式通过对象的组合和组件化,能够更好地处理系统中的复杂性。例如,组合模式允许将对象组织成树状结构,形成部分-整体的层次结构,以便更容易地处理对象集合。
- 对象的访问和控制:结构型设计模式提供了一些机制来控制对象的访问和可见性,以及限制对象之间的依赖关系。例如,外观模式可以封装一组复杂子系统的接口,提供简化的接口给客户端使用。
- 类和对象的灵活性:结构型设计模式通过将类和对象组合起来,提供了更大的灵活性和可扩展性。例如,桥接模式可以将抽象与实现解耦,使得它们可以独立地变化和演化。
结构型设计模式主要关注对象和类之间的组织关系、复杂性和交互问题。它们通过提供灵活的方式来管理对象之间的接口、关系和行为,帮助我们构建更健壮、灵活和可扩展的软件系统。
- 代理模式: 为真实对象提供一个代理,从而控制对真实对象的访问 。
- 适配模式 :使原本由于接口不兼容不能一起工作的类可以一起工作 。
- 桥接模式 :处理多层继承结构,处理多维度变化的场景,将各个维度设计成独立的继 承结构,使各个维度可以独立的扩展在抽象层建立关联。
- 组合模式 :将对象组合成树状结构以表示"部分和整体"层次结构,使得客户可以统一 的调用叶子对象和容器对象 。
- 装饰模式 :动态地给一个对象添加额外的功能,比继承灵活 。
- 外观模式 :为子系统提供统一的调用接口,使得子系统更加容易使用 。
- 享元模式 :运用共享技术有效的实现管理大量细粒度对象,节省内存,提高效率。
结构型
常用的有:代理模式、桥接模式、装饰者模式、适配器模式。
不常用的有:门面模式、组合模式、享元模式。
代理模式是解耦功能和非功能代码的类组合,代理类和被代理类实现或继承共同的父类;
桥接模式是从不同的纬度独立发展有各自不同的父类抽象,他们可以相互组合实现复杂关系的实现;
装饰器是对功能的增强,装饰器类和原始类有这共同的父类;
实际上,符合"组合关系"这种代码结构的设计模式有很多,比如之前讲过的代理模式、桥接模式,还有现在的装饰器模式。尽管它们的代码结构很相似,但是每种设计模式的意图是不同的。就拿比较相似的代理模式和装饰器模式来说吧,代理模式中,代理类附加的是跟原始类无关的功能,而在装饰器模式中,装饰器类附加的是跟原始类相关的增强功能。
代理、桥接、装饰器、适配器 4 种设计模式的区别:
代理、桥接、装饰器、适配器,这 4 种模式是比较常用的结构型设计模式。它们的代码结构非常相似。笼统来说,它们都可以称为 Wrapper 模式,也就是通过 Wrapper 类二次封装原始类。
尽管代码结构相似,但这 4 种设计模式的用意完全不同,也就是说要解决的问题、应用场景不同,这也是它们的主要区别。这里我就简单说一下它们之间的区别。
-
代理模式:
代理模式在不改变原始类接口的条件下,为原始类定义一个代理类,主要目的是控制访问,而非加强功能,这是它跟装饰器模式最大的不同。
-
桥接模式:
桥接模式的目的是将接口部分和实现部分分离,从而让它们可以较为容易、也相对独立地加以改变。
-
装饰器模式:
装饰者模式在不改变原始类接口的情况下,对原始类功能进行增强,并且支持多个装饰器的嵌套使用。
-
适配器模式:
适配器模式是一种事后的补救策略。适配器提供跟原始类不同的接口,而代理模式、装饰器模式提供的都是跟原始类相同的接口。
适配器是做接口转换,解决的是原接口和目标接口不匹配的问题。
门面模式做接口整合,解决的是多接口调用带来的问题。
结构型设计模式核心就是代码的组合来达到最大的扩展,不同模式根据解决问题不同,实现方式不同叫不同名字,归根结底都是在一个类中注入另一个类进行组合
代理模式。它在不改变原始类(或者叫被代理类)代码的情况下,通过引入代理类来给原始类附加功能。代理模式在平时的开发经常被用到,常用在业务系统中开发一些非功能性需求,比如:监控、统计、鉴权、限流、事务、幂等、日志。
桥接模式有两种理解方式。第一种理解方式是"将抽象和实现解耦,让它们能独立开发"。这种理解方式比较特别,应用场景也不多。另一种理解方式更加简单,类似"组合优于继承"设计原则,这种理解方式更加通用,应用场景比较多。不管是哪种理解方式,它们的代码结构都是相同的,都是一种类之间的组合关系。
适配器模式:
定义:
用来做适配的,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。
适配器模式是用来做适配,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。适配器模式有两种实现方式:类适配器和对象适配器。
- 类适配器使用继承关系来实现;
- 对象适配器使用组合关系来实现;
两种实现方式:
类适配器使用继承关系来实现,对象适配器使用组合关系来实现。
具体的代码实现如下所示。其中,ITarget 表示要转化成的接口定义。Adaptee 是一组不兼容 ITarget 接口定义的接口,Adaptor 将 Adaptee 转化成一组符合 ITarget 接口定义的接口。
java
// 类适配器: 基于继承
public interface ITarget {
void f1();
void f2();
void fc();
}
public class Adaptee {
public void fa() { //... }
public void fb() { //... }
public void fc() { //... }
}
public class Adaptor extends Adaptee implements ITarget {
public void f1() {
super.fa();
}
public void f2() {
//...重新实现f2()...
}
// 这里fc()不需要实现,直接继承自Adaptee,这是跟对象适配器最大的不同点
}
// 对象适配器:基于组合
public interface ITarget {
void f1();
void f2();
void fc();
}
public class Adaptee {
public void fa() { //... }
public void fb() { //... }
public void fc() { //... }
}
public class Adaptor implements ITarget {
private Adaptee adaptee;
public Adaptor(Adaptee adaptee) {
this.adaptee = adaptee;
}
public void f1() {
adaptee.fa(); //委托给Adaptee
}
public void f2() {
//...重新实现f2()...
}
public void fc() {
adaptee.fc();
}
}
针对这两种实现方式,在实际的开发中,到底该如何选择使用哪一种呢?判断的标准主要有两个,一个是 Adaptee 接口的个数,另一个是 Adaptee 和 ITarget 的契合程度。
- 如果 Adaptee 接口并不多,那两种实现方式都可以。
- 如果 Adaptee 接口很多,而且 Adaptee 和 ITarget 接口定义大部分都相同,那我们推荐使用类适配器,因为 Adaptor 复用父类 Adaptee 的接口,比起对象适配器的实现方式,Adaptor 的代码量要少一些。
- 如果 Adaptee 接口很多,而且 Adaptee 和 ITarget 接口定义大部分都不相同,那我们推荐使用对象适配器,因为组合结构相对于继承更加灵活。
适用场景:
1. 封装有缺陷的接口设计
假设我们依赖的外部系统在接口设计方面有缺陷(比如包含大量静态方法),引入之后会影响到我们自身代码的可测试性。为了隔离设计上的缺陷,我们希望对外部系统提供的接口进行二次封装,抽象出更好的接口设计,这个时候就可以使用适配器模式了。
java
public class CD { //这个类来自外部sdk,我们无权修改它的代码
//...
public static void staticFunction1() { //... }
public void uglyNamingFunction2() { //... }
public void tooManyParamsFunction3(int paramA, int paramB, ...) { //... }
public void lowPerformanceFunction4() { //... }
}
// 使用适配器模式进行重构
public interface ITarget {
void function1();
void function2();
void fucntion3(ParamsWrapperDefinition paramsWrapper);
void function4();
//...
}
// 注意:适配器类的命名不一定非得末尾带Adaptor
public class CDAdaptor extends CD implements ITarget {
//...
public void function1() {
super.staticFunction1();
}
public void function2() {
super.uglyNamingFucntion2();
}
public void function3(ParamsWrapperDefinition paramsWrapper) {
super.tooManyParamsFunction3(paramsWrapper.getParamA(), ...);
}
public void function4() {
//...reimplement it...
}
}
2. 统一多个类的接口设计
某个功能的实现依赖多个外部系统(或者说类)。通过适配器模式,将它们的接口适配为统一的接口定义,然后我们就可以使用多态的特性来复用代码逻辑。
假设我们的系统要对用户输入的文本内容做敏感词过滤,为了提高过滤的召回率,我们引入了多款第三方敏感词过滤系统,依次对用户输入的内容进行过滤,过滤掉尽可能多的敏感词。但是,每个系统提供的过滤接口都是不同的。这就意味着我们没法复用一套逻辑来调用各个系统。这个时候,我们就可以使用适配器模式,将所有系统的接口适配为统一的接口定义,这样我们可以复用调用敏感词过滤的代码。
java
public class ASensitiveWordsFilter { // A敏感词过滤系统提供的接口
//text是原始文本,函数输出用***替换敏感词之后的文本
public String filterSexyWords(String text) {
// ...
}
public String filterPoliticalWords(String text) {
// ...
}
}
public class BSensitiveWordsFilter { // B敏感词过滤系统提供的接口
public String filter(String text) {
//...
}
}
public class CSensitiveWordsFilter { // C敏感词过滤系统提供的接口
public String filter(String text, String mask) {
//...
}
}
// 未使用适配器模式之前的代码:代码的可测试性、扩展性不好
public class RiskManagement {
private ASensitiveWordsFilter aFilter = new ASensitiveWordsFilter();
private BSensitiveWordsFilter bFilter = new BSensitiveWordsFilter();
private CSensitiveWordsFilter cFilter = new CSensitiveWordsFilter();
public String filterSensitiveWords(String text) {
String maskedText = aFilter.filterSexyWords(text);
maskedText = aFilter.filterPoliticalWords(maskedText);
maskedText = bFilter.filter(maskedText);
maskedText = cFilter.filter(maskedText, "***");
return maskedText;
}
}
// 使用适配器模式进行改造
public interface ISensitiveWordsFilter { // 统一接口定义
String filter(String text);
}
public class ASensitiveWordsFilterAdaptor implements ISensitiveWordsFilter {
private ASensitiveWordsFilter aFilter;
public String filter(String text) {
String maskedText = aFilter.filterSexyWords(text);
maskedText = aFilter.filterPoliticalWords(maskedText);
return maskedText;
}
}
//...省略BSensitiveWordsFilterAdaptor、CSensitiveWordsFilterAdaptor...
// 扩展性更好,更加符合开闭原则,如果添加一个新的敏感词过滤系统,
// 这个类完全不需要改动;而且基于接口而非实现编程,代码的可测试性更好。
public class RiskManagement {
private List<ISensitiveWordsFilter> filters = new ArrayList<>();
public void addSensitiveWordsFilter(ISensitiveWordsFilter filter) {
filters.add(filter);
}
public String filterSensitiveWords(String text) {
String maskedText = text;
for (ISensitiveWordsFilter filter : filters) {
maskedText = filter.filter(maskedText);
}
return maskedText;
}
}
3. 替换依赖的外部系统
当我们把项目中依赖的一个外部系统替换为另一个外部系统的时候,利用适配器模式,可以减少对代码的改动。
java
// 外部系统A
public interface IA {
//...
void fa();
}
public class A implements IA {
//...
public void fa() { //... }
}
// 在我们的项目中,外部系统A的使用示例
public class Demo {
private IA a;
public Demo(IA a) {
this.a = a;
}
//...
}
Demo d = new Demo(new A());
// 将外部系统A替换成外部系统B
public class BAdaptor implemnts IA {
private B b;
public BAdaptor(B b) {
this.b= b;
}
public void fa() {
//...
b.fb();
}
}
// 借助BAdaptor,Demo的代码中,调用IA接口的地方都无需改动,
// 只需要将BAdaptor如下注入到Demo即可。
Demo d = new Demo(new BAdaptor(new B()));
4. 兼容老版本接口
在做版本升级的时候,对于一些要废弃的接口,我们不直接将其删除,而是暂时保留,并且标注为 deprecated,并将内部实现逻辑委托为新的接口实现。这样做的好处是,让使用它的项目有个过渡期,而不是强制进行代码修改。这也可以粗略地看作适配器模式的一个应用场景。
JDK1.0 中包含一个遍历集合容器的类 Enumeration。JDK2.0 对这个类进行了重构,将它改名为 Iterator 类,并且对它的代码实现做了优化。但是考虑到如果将 Enumeration 直接从 JDK2.0 中删除,那使用 JDK1.0 的项目如果切换到 JDK2.0,代码就会编译不通过。为了避免这种情况的发生,我们必须把项目中所有使用到 Enumeration 的地方,都修改为使用 Iterator 才行。
单独一个项目做 Enumeration 到 Iterator 的替换,勉强还能接受。但是,使用 Java 开发的项目太多了,一次 JDK 的升级,导致所有的项目不做代码修改就会编译报错,这显然是不合理的。这就是我们经常所说的不兼容升级。为了做到兼容使用低版本 JDK 的老代码,我们可以暂时保留 Enumeration 类,并将其实现替换为直接调用 Itertor。代码示例如下所示:
java
public class Collections {
public static Emueration emumeration(final Collection c) {
return new Enumeration() {
Iterator i = c.iterator();
public boolean hasMoreElments() {
return i.hashNext();
}
public Object nextElement() {
return i.next():
}
}
}
}
5. 适配不同格式的数据
适配器模式主要用于接口的适配,实际上,它还可以用在不同格式的数据之间的适配。比如,把从不同征信系统拉取的不同格式的征信数据,统一为相同的格式,以方便存储和使用。再比如,Java 中的 Arrays.asList() 也可以看作一种数据适配器,将数组类型的数据转化为集合容器类型。
java
List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");
剖析适配器模式在 Java 日志中的应用
Java 中有很多日志框架,在项目开发中,我们常常用它们来打印日志信息。其中,比较常用的有 log4j、logback,以及 JDK 提供的 JUL(java.util.logging) 和 Apache 的 JCL(Jakarta Commons Logging) 等。
大部分日志框架都提供了相似的功能,比如按照不同级别(debug、info、warn、erro......)打印日志等,但它们却并没有实现统一的接口。这主要可能是历史的原因,它不像 JDBC 那样,一开始就制定了数据库操作的接口规范。
比如,项目中用到的某个组件使用 log4j 来打印日志,而我们项目本身使用的是 logback。将组件引入到项目之后,我们的项目就相当于有了两套日志打印框架。每种日志框架都有自己特有的配置方式。所以,我们要针对每种日志框架编写不同的配置文件(比如,日志存储的文件地址、打印日志的格式)。如果引入多个组件,每个组件使用的日志框架都不一样,那日志本身的管理工作就变得非常复杂。所以,为了解决这个问题,我们需要统一日志打印框架。
如果你是做 Java 开发的,那 Slf4j 这个日志框架你肯定不陌生,它相当于 JDBC 规范,提供了一套打印日志的统一接口规范。不过,它只定义了接口,并没有提供具体的实现,需要配合其他日志框架(log4j、logback......)来使用。
不仅如此,Slf4j 的出现晚于 JUL、JCL、log4j 等日志框架,所以,这些日志框架也不可能牺牲掉版本兼容性,将接口改造成符合 Slf4j 接口规范。Slf4j 也事先考虑到了这个问题,所以,它不仅仅提供了统一的接口定义,还提供了针对不同日志框架的适配器。对不同日志框架的接口进行二次封装,适配成统一的 Slf4j 接口定义。 具体的代码示例如下所示:
java
// slf4j统一的接口定义
package org.slf4j;
public interface Logger {
public boolean isTraceEnabled();
public void trace(String msg);
public void trace(String format, Object arg);
public void trace(String format, Object arg1, Object arg2);
public void trace(String format, Object[] argArray);
public void trace(String msg, Throwable t);
public boolean isDebugEnabled();
public void debug(String msg);
public void debug(String format, Object arg);
public void debug(String format, Object arg1, Object arg2)
public void debug(String format, Object[] argArray)
public void debug(String msg, Throwable t);
//...省略info、warn、error等一堆接口
}
// log4j日志框架的适配器
// Log4jLoggerAdapter实现了LocationAwareLogger接口,
// 其中LocationAwareLogger继承自Logger接口,
// 也就相当于Log4jLoggerAdapter实现了Logger接口。
package org.slf4j.impl;
public final class Log4jLoggerAdapter extends MarkerIgnoringBase
implements LocationAwareLogger, Serializable {
final transient org.apache.log4j.Logger logger; // log4j
public boolean isDebugEnabled() {
return logger.isDebugEnabled();
}
public void debug(String msg) {
logger.log(FQCN, Level.DEBUG, msg, null);
}
public void debug(String format, Object arg) {
if (logger.isDebugEnabled()) {
FormattingTuple ft = MessageFormatter.format(format, arg);
logger.log(FQCN, Level.DEBUG, ft.getMessage(), ft.getThrowable());
}
}
public void debug(String format, Object arg1, Object arg2) {
if (logger.isDebugEnabled()) {
FormattingTuple ft = MessageFormatter.format(format, arg1, arg2);
logger.log(FQCN, Level.DEBUG, ft.getMessage(), ft.getThrowable());
}
}
public void debug(String format, Object[] argArray) {
if (logger.isDebugEnabled()) {
FormattingTuple ft = MessageFormatter.arrayFormat(format, argArray);
logger.log(FQCN, Level.DEBUG, ft.getMessage(), ft.getThrowable());
}
}
public void debug(String msg, Throwable t) {
logger.log(FQCN, Level.DEBUG, msg, t);
}
//...省略一堆接口的实现...
}
所以,在开发业务系统或者开发框架、组件的时候,我们统一使用 Slf4j 提供的接口来编写打印日志的代码,具体使用哪种日志框架实现(log4j、logback......),是可以动态地指定的(使用 Java 的 SPI 技术,这里我不多解释,你自行研究吧),只需要将相应的 SDK 导入到项目中即可。
不过,你可能会说,如果一些老的项目没有使用 Slf4j,而是直接使用比如 JCL 来打印日志,那如果想要替换成其他日志框架,比如 log4j,该怎么办呢?实际上,Slf4j 不仅仅提供了从其他日志框架到 Slf4j 的适配器,还提供了反向适配器,也就是从 Slf4j 到其他日志框架的适配。我们可以先将 JCL 切换为 Slf4j,然后再将 Slf4j 切换为 log4j。经过两次适配器的转换,我们就能成功将 JCL 切换为了 log4j。