使用ReduceByKey在Spark中进行词频统计

Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。

实验代码

scala 复制代码
import org.apache.spark.{SparkConf, SparkContext}

object ReduceByKey {

  def main(args: Array[String]): Unit = {
    // 创建 SparkConf 并设置相关配置
    val conf = new SparkConf().setAppName("WordCountExample").setMaster("local[*]")

    // 创建 SparkContext
    val sc = new SparkContext(conf)

    // 定义要计数的单词列表
    val wordList = List("hello", "world", "hello", "spark", "world", "spark", "hello")

    // 将列表转换为RDD
    val rdd = sc.parallelize(wordList)

    rdd.foreach(v => println(v))

    // 对单词进行映射计数,相同的键进行累加
    val rdd2 = rdd.map(v => (v, 1)).reduceByKey(_ + _)

    // 打印单词计数结果
    rdd2.foreach(println)

    // 关闭 SparkContext
    sc.stop()
  }
}

在执行 reduceByKey(_ + _) 这一步后,生成的 RDD 将包含每个单词及其对应的累加值,数据结构类似于 (单词, 累加值)。

在上下文中,_ + _ 表示一个匿名函数,用于对两个相同类型的值进行相加操作。在这里,这两个值是指 reduceByKey 函数对于相同键的两个值。具体来说:

第一个 _ 表示相同键的第一个值。

第二个 _ 表示相同键的第二个值。

在这个例子中,键是单词,而值是累加的次数。所以 _ + _ 表示将相同键的值(即累加的次数)相加,以得到该键对应的总累加值。

实验结果

复制代码
hello
hello
spark
world
world
spark
hello

(spark,2)
(hello,3)
(world,2)
相关推荐
TDengine (老段)34 分钟前
TDengine 字符串函数 TO_BASE64 用户手册
android·大数据·服务器·物联网·时序数据库·tdengine·涛思数据
啊吧怪不啊吧35 分钟前
算法王冠上的明珠——动态规划之斐波那契数列问题
大数据·算法·动态规划
梦里不知身是客118 小时前
sparkSQL连接报错的一个解决方法
spark
源码之家8 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
TDengine (老段)9 小时前
什么是 TDengine IDMP?
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
Apache Flink10 小时前
Flink Forward Asia 2025 城市巡回 · 深圳站
大数据·flink
Hello.Reader10 小时前
Flink DataStream API 打包使用 MySQL CDC 连接器
大数据·mysql·flink
2021_fc10 小时前
Flink入门指南:使用Java构建第一个Flink应用
java·大数据·flink
Hello.Reader10 小时前
Streaming ELT with Flink CDC · Iceberg Sink
大数据·flink
RPA机器人就选八爪鱼10 小时前
RPA财务机器人:驱动财务数字化转型的核心引擎
大数据·运维·人工智能·机器人·rpa