使用ReduceByKey在Spark中进行词频统计

Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。

实验代码

scala 复制代码
import org.apache.spark.{SparkConf, SparkContext}

object ReduceByKey {

  def main(args: Array[String]): Unit = {
    // 创建 SparkConf 并设置相关配置
    val conf = new SparkConf().setAppName("WordCountExample").setMaster("local[*]")

    // 创建 SparkContext
    val sc = new SparkContext(conf)

    // 定义要计数的单词列表
    val wordList = List("hello", "world", "hello", "spark", "world", "spark", "hello")

    // 将列表转换为RDD
    val rdd = sc.parallelize(wordList)

    rdd.foreach(v => println(v))

    // 对单词进行映射计数,相同的键进行累加
    val rdd2 = rdd.map(v => (v, 1)).reduceByKey(_ + _)

    // 打印单词计数结果
    rdd2.foreach(println)

    // 关闭 SparkContext
    sc.stop()
  }
}

在执行 reduceByKey(_ + _) 这一步后,生成的 RDD 将包含每个单词及其对应的累加值,数据结构类似于 (单词, 累加值)。

在上下文中,_ + _ 表示一个匿名函数,用于对两个相同类型的值进行相加操作。在这里,这两个值是指 reduceByKey 函数对于相同键的两个值。具体来说:

第一个 _ 表示相同键的第一个值。

第二个 _ 表示相同键的第二个值。

在这个例子中,键是单词,而值是累加的次数。所以 _ + _ 表示将相同键的值(即累加的次数)相加,以得到该键对应的总累加值。

实验结果

复制代码
hello
hello
spark
world
world
spark
hello

(spark,2)
(hello,3)
(world,2)
相关推荐
Elastic 中国社区官方博客4 小时前
用于 UBI 的 Elasticsearch 插件:从搜索查询中分析用户行为
大数据·数据库·elasticsearch·搜索引擎·全文检索
wdfk_prog4 小时前
实战指南:如何将Git仓库中的特定文件夹及其历史完整迁移到另一个仓库
大数据·linux·运维·笔记·git·学习·elasticsearch
Yzxs0094 小时前
【8月优质EI会议合集|高录用|EI检索稳定】计算机、光学、通信技术、电子、建模、数学、通信工程...
大数据·人工智能·算法·计算机视觉·信息与通信
阿里云大数据AI技术5 小时前
DataWorks千万级任务调度与全链路集成开发治理赋能智能驾驶技术突破
大数据·数据库·数据挖掘
zxsz_com_cn7 小时前
智能化设备维护:开启高效运维新时代
大数据·数据库·人工智能
qq_463944867 小时前
【Spark征服之路-4.3-Kafka】
大数据·spark·kafka
黄雪超9 小时前
Kafka——常见工具脚本大汇总
大数据·分布式·kafka
siliconstorm.ai10 小时前
AWS 算力瓶颈背后:生成式 AI 的基础设施战争
大数据·人工智能·chatgpt
勇哥的编程江湖10 小时前
spark入门-helloword
大数据·分布式·spark
乙真仙人12 小时前
数据,正在成为AI大模型最后的护城河
大数据·人工智能·数字化