使用ReduceByKey在Spark中进行词频统计

Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。

实验代码

scala 复制代码
import org.apache.spark.{SparkConf, SparkContext}

object ReduceByKey {

  def main(args: Array[String]): Unit = {
    // 创建 SparkConf 并设置相关配置
    val conf = new SparkConf().setAppName("WordCountExample").setMaster("local[*]")

    // 创建 SparkContext
    val sc = new SparkContext(conf)

    // 定义要计数的单词列表
    val wordList = List("hello", "world", "hello", "spark", "world", "spark", "hello")

    // 将列表转换为RDD
    val rdd = sc.parallelize(wordList)

    rdd.foreach(v => println(v))

    // 对单词进行映射计数,相同的键进行累加
    val rdd2 = rdd.map(v => (v, 1)).reduceByKey(_ + _)

    // 打印单词计数结果
    rdd2.foreach(println)

    // 关闭 SparkContext
    sc.stop()
  }
}

在执行 reduceByKey(_ + _) 这一步后,生成的 RDD 将包含每个单词及其对应的累加值,数据结构类似于 (单词, 累加值)。

在上下文中,_ + _ 表示一个匿名函数,用于对两个相同类型的值进行相加操作。在这里,这两个值是指 reduceByKey 函数对于相同键的两个值。具体来说:

第一个 _ 表示相同键的第一个值。

第二个 _ 表示相同键的第二个值。

在这个例子中,键是单词,而值是累加的次数。所以 _ + _ 表示将相同键的值(即累加的次数)相加,以得到该键对应的总累加值。

实验结果

复制代码
hello
hello
spark
world
world
spark
hello

(spark,2)
(hello,3)
(world,2)
相关推荐
万悉科技21 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
汽车仪器仪表相关领域1 天前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar1 天前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
GeminiJM1 天前
Elasticsearch minimum_should_match 参数详解
大数据·elasticsearch·jenkins
少废话h1 天前
Redis主从与集群搭建全指南
大数据·linux·redis·mysql
TextIn智能文档云平台1 天前
什么是多模态信息抽取,它和传统OCR有什么区别?
大数据·人工智能
雨中飘荡的记忆1 天前
HBase实战指南
大数据·数据库·hbase
半吊子全栈工匠1 天前
如何接手一个数据团队?
大数据·人工智能
新诺韦尔API1 天前
如何快速接入手机携号转网查询接口?
大数据·智能手机·api
都市摆渡人1 天前
反理论产品周刊#3:如何有效地做产品知识管理
大数据