YOLO相关原理(文件结构、视频检测等)

超参数进化(hyperparameter evolution)

超参数进化是一种使用了genetic algorithm(GA)遗传算法进行超参数优化的一种方法。

YOLOv5的文件结构

images文件夹内的文件和labels中的文件存在一一对应关系

激活函数:非线性处理单元

activation functions

四种激活函数

YOLO视频检测

对于视频检测,使用YOLO进行模型训练时怎样对视频进行标注呢?

以下是对视频进行标注的基本步骤:

python 复制代码
import cv2
video = cv2.VideoCapture('path_to_video.mp4')
count = 0
while True:
    ret, frame = video.read()
    if not ret:
        break
    cv2.imwrite(f'frames/frame_{count}.jpg', frame)
    count += 1
video.release()
  1. 视频分帧:使用工具(例如OpenCV)将视频分解为静态帧。这样,可以逐帧进行标注。

  2. 选择标注工具:选择一个合适的图像标注工具。有许多可用的图像标注工具,如LabelImg、VGG Image Annotator (VIA)等。这些工具通常允许用户在图像上画框并为每个框指定一个标签。

  3. 标注帧 :使用所选的标注工具逐帧标注视频帧上的对象。对于YOLO,你会得到一个对应的.txt文件,其中每行表示一个框,格式为[class_id x_center y_center width height],所有值都相对于图像宽度和高度进行了归一化。

  4. 组织数据和标签 :确保所有的帧和相应的标注文件被正确地组织。通常,图片和标注文件的命名是对应的,例如frame_0.jpgframe_0.txt

  5. 训练模型:一旦你标注了足够的数据,你就可以使用它们来训练你的YOLO模型了。

  6. 考虑使用半自动标注:如果你有一个预训练的模型,可以使用它来为视频帧生成初步标注,然后手动校正这些标注。这样可以大大加快标注过程。

标注视频数据是一个耗时的过程,尤其是对于长视频。一种常见的做法是标注视频中的关键帧(而不是每一帧),然后使用插值方法生成中间帧的标注。不过,这种方法的效果取决于视频的内容和运动速度。

对于JPEG格式的原始数据,又该如何进行使用呢?

JPEG 是一种常见的图片压缩格式,而不是视频格式。所以,你不能直接将一系列 JPEG 图像视为一个视频。但是,你可以从多个 JPEG 图像创建一个视频,或从视频中提取帧并将其保存为 JPEG 图像。

如果你的意思是使用 JPEG 图像来生成或处理视频内容,那么答案是肯定的。例如:

  1. 视频生成:你可以使用多个 JPEG 图像作为帧来创建一个视频。例如,使用 OpenCV,你可以从一系列 JPEG 图像创建一个 MP4 或 AVI 视频。

  2. 视频处理:在某些视频处理任务中,可能首先将视频分解为帧(保存为 JPEG 或其他格式的图像),然后处理这些图像,最后再重新组合它们以生成处理过的视频。

  3. 视频标注:如前面提到的,当标注视频数据时,一个常见的方法是将视频分解为帧并保存为 JPEG 或其他格式的图像。然后,这些图像可以被手动或自动地标注,并用于训练或评估模型。

总之,虽然 JPEG 本身不是视频格式,但它在视频处理和分析中经常被使用。

查看视频对应帧数

python 复制代码
import cv2
import os

# 创建保存帧的目录
output_folder = "frames"
if not os.path.exists(output_folder):
    os.makedirs(output_folder)

# 打开视频文件
video = cv2.VideoCapture(r'C:\Users\Lenovo\Desktop\模型.mp4')
count = 0

#获取视频帧数
fps = video.get(cv2.CAP_PROP_FPS)
print(f"Frames per second: {fps}")

运行上述程序即可获得对应视频的帧数

感觉对你有帮助的话不要忘记三连呦~~

相关推荐
1373i几秒前
【Yolo】快速上手Yolo实战
yolo
OAFD.12 小时前
YOLO-V1 与 YOLO-V2 技术详解:从经典到优化的目标检测演进
yolo·目标检测·目标跟踪
LiJieNiub14 小时前
YOLO-V1 与 YOLO-V2 核心技术解析:目标检测的迭代突破
人工智能·yolo·目标检测
arron889921 小时前
PNNX + TorchScript + 手动修改后处理逻辑,最终输出适配 NCNN官方 yolov8.cpp
yolo
麒羽76021 小时前
从 YOLOv1 到 YOLOv2
yolo
newxtc1 天前
【 广州产权交易所-注册安全分析报告-无验证方式导致安全隐患】
开发语言·人工智能·selenium·安全·yolo
weixin_418007601 天前
用opencv来识别信用卡的号码 Vs 使用yolo+paddleocr
人工智能·opencv·yolo
起个名字费劲死了1 天前
Pytorch Yolov11目标检测+Android部署 留贴记录
pytorch·yolo·目标检测·安卓
甜辣uu2 天前
【源码讲解+复现】YOLOv10: Real-Time End-to-End Object Detection
人工智能·yolo·目标检测·nms-free
程序猿小D2 天前
【完整源码+数据集+部署教程】 【运输&加载码头】仓库新卸物料检测系统源码&数据集全套:改进yolo11-DRBNCSPELAN
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·仓库新卸物料检测系统