YOLO相关原理(文件结构、视频检测等)

超参数进化(hyperparameter evolution)

超参数进化是一种使用了genetic algorithm(GA)遗传算法进行超参数优化的一种方法。

YOLOv5的文件结构

images文件夹内的文件和labels中的文件存在一一对应关系

激活函数:非线性处理单元

activation functions

四种激活函数

YOLO视频检测

对于视频检测,使用YOLO进行模型训练时怎样对视频进行标注呢?

以下是对视频进行标注的基本步骤:

python 复制代码
import cv2
video = cv2.VideoCapture('path_to_video.mp4')
count = 0
while True:
    ret, frame = video.read()
    if not ret:
        break
    cv2.imwrite(f'frames/frame_{count}.jpg', frame)
    count += 1
video.release()
  1. 视频分帧:使用工具(例如OpenCV)将视频分解为静态帧。这样,可以逐帧进行标注。

  2. 选择标注工具:选择一个合适的图像标注工具。有许多可用的图像标注工具,如LabelImg、VGG Image Annotator (VIA)等。这些工具通常允许用户在图像上画框并为每个框指定一个标签。

  3. 标注帧 :使用所选的标注工具逐帧标注视频帧上的对象。对于YOLO,你会得到一个对应的.txt文件,其中每行表示一个框,格式为[class_id x_center y_center width height],所有值都相对于图像宽度和高度进行了归一化。

  4. 组织数据和标签 :确保所有的帧和相应的标注文件被正确地组织。通常,图片和标注文件的命名是对应的,例如frame_0.jpgframe_0.txt

  5. 训练模型:一旦你标注了足够的数据,你就可以使用它们来训练你的YOLO模型了。

  6. 考虑使用半自动标注:如果你有一个预训练的模型,可以使用它来为视频帧生成初步标注,然后手动校正这些标注。这样可以大大加快标注过程。

标注视频数据是一个耗时的过程,尤其是对于长视频。一种常见的做法是标注视频中的关键帧(而不是每一帧),然后使用插值方法生成中间帧的标注。不过,这种方法的效果取决于视频的内容和运动速度。

对于JPEG格式的原始数据,又该如何进行使用呢?

JPEG 是一种常见的图片压缩格式,而不是视频格式。所以,你不能直接将一系列 JPEG 图像视为一个视频。但是,你可以从多个 JPEG 图像创建一个视频,或从视频中提取帧并将其保存为 JPEG 图像。

如果你的意思是使用 JPEG 图像来生成或处理视频内容,那么答案是肯定的。例如:

  1. 视频生成:你可以使用多个 JPEG 图像作为帧来创建一个视频。例如,使用 OpenCV,你可以从一系列 JPEG 图像创建一个 MP4 或 AVI 视频。

  2. 视频处理:在某些视频处理任务中,可能首先将视频分解为帧(保存为 JPEG 或其他格式的图像),然后处理这些图像,最后再重新组合它们以生成处理过的视频。

  3. 视频标注:如前面提到的,当标注视频数据时,一个常见的方法是将视频分解为帧并保存为 JPEG 或其他格式的图像。然后,这些图像可以被手动或自动地标注,并用于训练或评估模型。

总之,虽然 JPEG 本身不是视频格式,但它在视频处理和分析中经常被使用。

查看视频对应帧数

python 复制代码
import cv2
import os

# 创建保存帧的目录
output_folder = "frames"
if not os.path.exists(output_folder):
    os.makedirs(output_folder)

# 打开视频文件
video = cv2.VideoCapture(r'C:\Users\Lenovo\Desktop\模型.mp4')
count = 0

#获取视频帧数
fps = video.get(cv2.CAP_PROP_FPS)
print(f"Frames per second: {fps}")

运行上述程序即可获得对应视频的帧数

感觉对你有帮助的话不要忘记三连呦~~

相关推荐
@Mr_LiuYang16 小时前
用自己的数据训练yolov11目标检测
yolo·目标检测·实例分割·yolov11
子正20 小时前
yolo11s rknn无法detect的bugfix - step by step
yolo·机器学习·ai
子正4 天前
pt->onnx->rknn(量化) step by step & FAQ
python·深度学习·yolo·ai
欣然~4 天前
使用 YOLOv8 模型分析摄像头的图像
yolo
Hello Mr.Z4 天前
在香橙派5 NPU上使用Yolov5
yolo·npu·香橙派5
goomind6 天前
YOLOv11实战海洋动物图像识别
pytorch·深度学习·yolo·计算机视觉·cnn·海洋动物
前网易架构师-高司机7 天前
木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%
yolo·数据集·木材缺陷识别·木材表面缺陷
goomind8 天前
深度卷积神经网络实战海洋动物图像识别
深度学习·神经网络·yolo·计算机视觉·cnn·pyqt5·海洋动物识别
糖炒狗子8 天前
基于YoloV11和驱动级鼠标模拟实现Ai自瞄
人工智能·yolo·计算机外设
飞瀑8 天前
计算机视觉核心任务
yolo