中科亿海微ROM使用

标题

ROM(Read-Only Memory,只读存储器)是一种在FPGA(Field-Programmable Gate Array,现场可编程门阵列)中常用的存储器类型。与RAM(Random Access Memory,机存取存储器)不同,ROM的内容在制造过程中被预先编程,并且无法在运行时修改。

1 :ROM通常用于存储固定的程序代码、常量数据或查找表等,因为它们具有不可变的特性。它的主要特点包括:

①:只读性:ROM中的数据在制造过程中被写入,一旦编程完成,就无法进行修改。这确保了数据的安全性和稳定性;

②:非易失性:ROM中的数据在断电或重启后仍然保持不变,不会丢失。这是与RAM的一个重要区别;

③:高密度:ROM具有较高的存储密度,因为它可以在硬件级别上实现,而不需要像RAM那样用传统的逻辑门来实现。

2:FPGA中通常会使用不同类型的ROM,包括:

①:M4K(Memory 4K):这是Xilinx FPGA系列中常见的一种ROM资源,可以存储4K个数据位。M4K ROM具有灵活的读写接口和配置选项,可以满足不同应用的需求;

②:Block RAM:FPGA中的Block RAM也可以用作ROM,通过在初始化时将数据加载到Block RAM中来实现。Block RAM通常具有较大的存储容量和更高的读写速度;

使用ROM的好处是可以提高系统的性能和资源效率,特别是对于一些不需要在运行时修改的数据和代码。但是,由于ROM的内容无法修改,因此对于需要动态更新的数据,需要使用其他类型的存储器,如RAM。

简介

FPGA中的ROM(Read-Only Memory,只读存储器)起源于计算机系统中的存储器技术。在早期的计算机系统中,ROM被用于存储固定的程序代码和常量数据,以及用于查找表和数据转换等应用。随着FPGA技术的发展,ROM成为了FPGA设计中常用的一种存储器类型。与传统的硬件设计相比,FPGA具有可编程性的优势,可以根据特定的应用需求进行灵活的配置和重新编程。在FPGA中,ROM的设计和实现方式通常是通过在硬件级别上配置逻辑电路来实现。它可以在FPGA芯片制造过程中被预先编程,也可以在设计过程中使用特定的工具和语言来描述和生成ROM的内容。ROM在FPGA设计中具有多种应用,包括存储固定的程序代码、常量数据、查找表和数据转换等。由于ROM具有只读性和非易失性的特点,它可以提供稳定和安全的存储,同时具有较高的存储密度和快速的读取速度。这使得ROM成为了一种重要的存储器类型,被广泛应用于FPGA设计中的不同领域,如数字信号处理、通信系统、图像处理和嵌入式系统等。

正文

引言

  1. 存储常量数据:ROM常用于存储常量数据,如查找表、预先计算的数学函数值、校正数据等。这些数据在设计过程中是固定的,不需要在运行时进行修改;

  2. 存储程序代码:在一些应用中,特定的程序代码可以被预先存储在ROM中。这样可以节省FPGA的逻辑资源,并且可以提高系统的性能和响应时间;

  3. 替代逻辑电路:FPGA中的ROM可以替代一些逻辑电路的功能,特别是对于复杂的查找表和数据转换。使用ROM可以简化设计,并且可以提供更高的性能和资源效率;

  4. 快速数据存取:由于ROM具有快速的读取特性,它常用于需要快速存取数据的应用,如数字信号处理、图像处理和通信系统等;

  5. 存储初始化数据:在FPGA设计中,ROM可以用于存储初始化数据,如启动配置、初始化寄存器值等。这些数据在设备上电时被加载到相应的寄存器中,用于初始化系统状态;

  6. 安全存储:ROM中的数据是只读的,无法被修改。这使得ROM成为存储安全相关数据的理想选择,如加密密钥、安全配置等。

总而言之,FPGA中的ROM提供了一种灵活、高性能和资源高效的存储器选项,可用于存储常量数据、程序代码、查找表和初始化数据等。它在各种应用领域中发挥着重要的作用,使得FPGA设计更加灵活和高效。

主体

使用中科亿海微eLinx开发工具进行编程:

①:以下是使用Verilog开发一套ROM(软核)的示例代码:

module ROM (
  input wire [N-1:0] address,
  output wire [M-1:0] data
);

  reg [M-1:0] rom [0:(2**N)-1];

  initial begin
    rom[0] = 8'b00000000;
    rom[1] = 8'b00000001;
    // ...
    rom[(2**N)-1] = 8'b11111111;
  end

  assign data = rom[address];

endmodule

在这个示例中,我们定义了一个名为ROM的模块,该模块具有一个输入端口address(用于指定ROM中的地址)和一个输出端口data(用于输出对应地址的数据)。

在模块内部,我们使用reg类型的数组rom来表示ROM的存储单元。数组的大小为2的N次方,其中N是地址位宽。例如,如果地址位宽为8位,则数组大小为256。

在initial块中,我们可以初始化rom数组中的数据。根据您的需求,将存储在ROM中的数据写入到rom数组的相应位置。在示例中,我们使用8位宽的数据,每个地址存储一个8位的字节。

最后,我们使用assign语句将rom数组中对应地址的数据赋值给输出端口data。

请注意,这只是一个简单的示例,用于说明如何使用Verilog开发一套ROM的软核。实际的ROM设计可能需要更多的功能和控制逻辑,例如读取使能、写使能、读写时序等。具体的设计取决于您的需求和目标平台。

②:使用定制好的IP核进行开发:

注意: 需要手动修改ROM IP核的底层程序,手动添加MIF文件:

手动修改我们需要读取的MIF文件:

module ROM_TOP(
	input	wire 	clk,
	output	[7:0]	rom_data
    );
	
	reg [4:0]  address;
	
	
	always @ (posedge clk)
		address	<=	address	+	1'b1;
	
	m4k_1	u_m4k_1(
	.address				(address),
	.clock					(clk),
	.q						(rom_data)
	);

结论

在使用FPGA开发ROM时,有一些要注意的关键点:

  1. 内存容量:确定所需的ROM容量,即地址位宽和数据位宽。根据应用需求和数据量大小,选择合适的ROM大小。确保ROM的存储容量足够存储所需的数据。

  2. 内存布局:考虑如何组织ROM的内存布局。根据应用场景和数据存储需求,确定存储单元的分配,如按字节、字、行或其他方式进行分配。合理的内存布局可以提高存取效率和资源利用率。

  3. 数据初始化:在设计过程中,确保在ROM中正确初始化所需的数据。根据应用需求,编写初始化代码或使用工具进行数据初始化。确认ROM中存储的数据与设计要求一致。

  4. 读写时序:了解ROM的读写时序要求。根据FPGA芯片和ROM规格,设置正确的时钟频率、读写使能信号和时序约束。确保读取操作和写入操作在正确的时钟周期内完成,并满足ROM的时序要求。

  5. 仿真验证:使用仿真工具对设计进行验证,确保ROM的功能和数据正确性。通过仿真测试,检查ROM在各种情况下是否按预期工作,并验证所需数据的正确性。

  6. 优化和资源利用:优化ROM的设计,以减少资源使用和功耗。使用合理的编码方式、压缩算法和存储器布局来提高ROM的效率和资源利用率。

  7. 灵活性和可扩展性:考虑将ROM设计为可灵活扩展和可配置的。根据需求,设计ROM以支持动态数据更新或通过编程重新配置ROM内容的功能。

  8. 设计验证和调试:进行系统级验证和调试,确保ROM与其他模块和外设的正确集成。验证ROM与其他电路之间的接口和数据通信是否正常。

通过注意以上关键点,能够更好地开发和使用FPGA中的ROM,确保其功能正确性、性能优化和资源利用率。

相关推荐
DS小龙哥5 小时前
基于Zynq FPGA的雷龙SD NAND存储芯片性能测试
fpga开发·sd nand·雷龙·spi nand·spi nand flash·工业级tf卡·嵌入式tf卡
上理考研周导师15 小时前
第二章 虚拟仪器及其构成原理
fpga开发
FPGA技术实战16 小时前
《探索Zynq MPSoC》学习笔记(二)
fpga开发·mpsoc
bigbig猩猩1 天前
FPGA(现场可编程门阵列)的时序分析
fpga开发
Terasic友晶科技1 天前
第2篇 使用Intel FPGA Monitor Program创建基于ARM处理器的汇编或C语言工程<二>
fpga开发·汇编语言和c语言
码农阿豪1 天前
基于Zynq FPGA对雷龙SD NAND的测试
fpga开发·sd nand·spi nand·spi nand flash·工业级tf卡·嵌入式tf卡
江山如画,佳人北望1 天前
EDA技术简介
fpga开发
淘晶驰AK1 天前
电子设计竞赛准备经历分享
嵌入式硬件·fpga开发
最好有梦想~1 天前
FPGA时序分析和约束学习笔记(4、IO传输模型)
笔记·学习·fpga开发