高级SQL分析函数-窗口函数

摘要:本文由葡萄城技术团队于掘金原创并首发。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。

前言

SQL语句中,聚合函数在统计业务数据结果时起到了重要作用,比如计算每个业务地区的业务总数、每个班级的学生平均分以及每个分类的最大值等。然而,今天我将介绍窗口函数,与聚合函数相比,它们也是一组函数,但在使用方法和适用场景上有所不同。在本章节中,我将重点介绍窗口函数中的RANK和DENSE_RANK函数,以及它们在排名和筛选方面的应用场景。这些窗口函数可以帮助我们更灵活地处理数据并获得所需的结果,需要注意的是,目前主流的数据库对窗口函数的最低需求版本如下:

Mysql (>=8.0) PostgreSQL(>=8.4) SQL Server(>2005) SQLite(>3.25.0)

如果您的数据库版本低于上述要求,将无法使用窗口函数。

需求背景:

为了让大家更好的理解,我将以学生数据作为查询的条件背景:假设现在某个学校的某个年级的同学完成了一次考试,成绩也已经录入到数据库中:

现在该年级的教务主任想要看一下:

1.这次考试本年级各个科目的前2名的同学。

2.这次考试每个班级中各个科目的前2名。

3.这次考试每个班级中的总分排名前2名。

如果用普通的SQL查询即麻烦也费时间,而使用RANK和DENSE_RANK函数就可以很快的查询出想要的学生数据,下面将为大家介绍如何使用RANK和DENSE_RANK函数实现学生数据的查询。

使用聚RANK和DENSE_RANK函数查询学生数据

1.查询本年级各个科目前2名的同学。

为了获得各个不同科目各自的前2名,我们需要先使用 Rank() 函数来给每个学生在各自科目的分区打上成绩排名, 执行如下SQL 语句,查询出来的结果如下图。

select sd.*, RANK() over(partition by subject order by score desc) as _rank from score_data sd;

可以看到,执行结果里面已经根据各个科目的成绩得到了排名字段 _rank, 接下来只需要使用过滤掉 _rank 字段大于2的部分即可,查询的结果如下图所示。

sql 复制代码
select * from (

select sd.*, RANK() over(partition by subject order by score desc) as _rank from score_data sd

) tmp

where tmp._rank <=2

从上图中看到如果存在成绩一样的情况,就会出现像数学科目的查询结果:数学查询出来了三个值(因为有两个人的数学成绩是一样的77分),如果我们只想保留一条重复的数据,我们可以使用DENSE_RANK函数,这个函数的计算语法和 RANK 基本一致,唯一不同的点在于, Rank 计算时会得到成绩高于当前行的记录的总行数,也就是上图查询出来的数学科目的三条数据,而DENSE_RANK 则是计算成绩高于当前行的去重记录的总行数,也就是说,如果出现像上图的数学科目中的重复的数据,就会去掉重复的数据。

2.查询每个班级中各个科目的前2名。

查询每个班级中各个科目的前2名只需要在第一步(查询本年级各个科目前2名的同学)的加上一个 class 班级的分区规则即可,查询的结果如下图所示:

sql 复制代码
select * from (

select sd.*, RANK() over(partition by subject, class order by score desc) as _rank from score_data sd

) tmp

where tmp._rank <=2

3. 查询每个班级中的总分排名前2名。

同理,在第二步(查询score_data表中每个班级中各个科目的前2名)的基础上再添加一个成绩的总和SUM(score)函数即可查询每个班级中的总分前两名。

sql 复制代码
select class,name,SUM(score) AS total_score,

RANK() over (PARTITION by class order by SUM(score) desc)

from score_data sd group by class,name

在这个指标的计算中,需要把聚合函数和排名函数结合起来使用,因为每个人的总成绩被拆分为了多个科目的和,所以需要在班级和科目的联合分组维度上进行聚合,把数据压缩到每人总分的颗粒度。

总结

窗口函数是 SQL 函数中非常强大的工具,尤其是在报表统计等场景领域。它们不仅能够简化复杂的数据计算和分析,还能提高查询效率和灵活性。窗口函数就像是数据库操作中最锋利的瑞士军刀,为我们提供了一种强大而精确的方式来处理数据。

扩展链接:

Spring Boot框架下实现Excel服务端导入导出

项目实战:在线报价采购系统(React +SpreadJS+Echarts)

Svelte 框架结合 SpreadJS 实现纯前端类 Excel 在线报表设计

相关推荐
Li.CQ9 小时前
SQL学习笔记(二)
笔记·sql·学习
白衣衬衫 两袖清风11 小时前
SQL联查案例
数据库·sql
晨曦54321015 小时前
MySQL MOD()函数详解与Python对比
sql
甘露s15 小时前
MySQL深入之索引、存储引擎和SQL优化
数据库·sql·mysql
偶遇急雨洗心尘16 小时前
记录一次服务器迁移时,数据库版本不一致导致sql函数报错和系统redirect重定向丢失域名问题
运维·服务器·数据库·sql
Logic10116 小时前
《Mysql数据库应用》 第2版 郭文明 实验5 存储过程与函数的构建与使用核心操作与思路解析
数据库·sql·mysql·学习笔记·计算机网络技术·形考作业·国家开放大学
小二·16 小时前
MyBatis基础入门《十六》企业级插件实战:基于 MyBatis Interceptor 实现 SQL 审计、慢查询监控与数据脱敏
数据库·sql·mybatis
小二·17 小时前
MyBatis基础入门《十二》批量操作优化:高效插入/更新万级数据,告别慢 SQL!
数据库·sql·mybatis
百锦再17 小时前
国产数据库的平替亮点——关系型数据库架构适配
android·java·前端·数据库·sql·算法·数据库架构
IT枫斗者18 小时前
Netty的原理和springboot项目整合
java·spring boot·后端·sql·科技·mysql·spring