TCGA数据下载推荐:R语言easyTCGA包

复制代码
#使用easyTCGA获取数据
#清空
rm(list=ls())
gc()
# 安装bioconductor上面的R包
options(BioC_mirror="https://mirrors.tuna.tsinghua.edu.cn/bioconductor")
if(!require("BiocManager")) install.packages("BiocManager")
if(!require("TCGAbiolinks")) BiocManager::install("TCGAbiolinks")
if(!require("SummarizedExperiment")) BiocManager::install("SummarizedExperiment")
if(!require("DESeq2")) BiocManager::install("DESeq2")
if(!require("edgeR")) BiocManager::install("edgeR")
if(!require("limma")) BiocManager::install("limma")
# 安装cran上面的R包
if(!require("survival")) install.packages("survival")
if(!require("broom")) install.packages("broom")
if(!require("devtools")) install.packages("devtools")
if(!require("cli")) install.packages("cli")
#devtools::install_github("ayueme/easyTCGA")
library(easyTCGA)
help(package="easyTCGA")
setwd("F:\\TCGA\\TCGA-COAD")
#下载mRNA、lncRNA和临床信息
COAD<-getmrnaexpr("TCGA-COAD")#原始下载的count, TPM, FPKM 均没有经过log2转化
#下载miRNA
COAD_miRNA<-getmirnaexpr("TCGA-COAD")
#下载copy number variation data
COAD_cnv<-getcnv("TCGA-COAD")
#下载masked somatic mutation 体细胞突变
COAD_snv<-getsnvmaf("TCGA-COAD")
#下载DNA methylation beta value 甲基化数据
getmethybeta("TCGA-COAD")
复制代码
#从下载目录中打开数据
#差异分析
diff<-diff_analysis(exprset=mrna_expr_counts,#没有经过log2转化
              project="TCGA-COAD",
              save=F)

#批量生存分析
surv<-batch_survival(
  exprset=mrna_expr_counts,
  clin=clin_info,
  is_count = T,
  optimal_cut = TRUE,
  project="TCGA-COAD",
  save_data = FALSE,
  min_sample_size = 5,
  print_index = TRUE
)

#突变分析:瀑布图
#BiocManager::install("maftools")
library(maftools)
maf<-read.maf(snv,clinicalData=clin_snv)
plotmafSummary(maf)
colnames(clin_snv)
oncoplot(maf=maf,
         clinicalFeatures=c("ajcc_pathologic_stage","vital_status"),
         top=10,
         sortByAnnotation=T
)
复制代码
#绘制KM曲线
dim(mrna_expr_counts)
set.seed(123)
colnames(clin_info)
clin<-data.frame(time=clin_info$days_to_last_follow_up,
                 event=clin_info$vital_status)
clin$event<-ifelse(clin$event=="Alive",0,1)
plot_KM(exprset=mrna_expr_counts, 
        marker="CHPF", #基因
        clin=clin, 
        optimal_cut = TRUE, 
        return_data = TRUE)
复制代码
#正常和癌症组织基因表达对比箱线图
rownames(mrna_expr_counts)
plot_gene_paired(exprset=mrna_expr_counts, 
                 marker="CHPF", #基因
                 return_data = TRUE)
复制代码
#比较组间基因表达差异
set.seed(123)
group=sample(c(0,1),524,replace = T)
plot_gene(exprset=mrna_expr_counts, 
          marker=c("CHPF","MAOA"), 
          group=group, 
          return_data = TRUE)
相关推荐
青啊青斯34 分钟前
二、PaddlePaddle seal_recognition印章内容提取
人工智能·r语言·paddlepaddle
Piar1231sdafa42 分钟前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
ASD123asfadxv2 小时前
基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
分类·数据挖掘·汽车
小辉懂编程3 小时前
数据分析入门:使用pandas进行数据处理 (数据读取,数据清洗,数据处理,数据可视化)
数据挖掘·数据分析·pandas
祝威廉5 小时前
摘下数据分析的皇冠:机器学习,InfiniSynapse 金融评分卡案例
人工智能·机器学习·金融·数据挖掘·数据分析
asyxchenchong8886 小时前
联合物种分布模型HMSC——深入贝叶斯群落生态学分析,涵盖单物种与多物种建模、环境筛与生物筛解析、时空数据分析及系统发育整合等
经验分享·数据挖掘·数据分析
Katecat996636 小时前
基于显微镜图像的体液细胞分类与异常检测:改进RetinaNet模型实现
人工智能·分类·数据挖掘
deardao6 小时前
【对比语言-图像预训练】SuperCLIP:基于简单分类监督增强的 CLIP 模型
人工智能·分类·数据挖掘
我的offer在哪里6 小时前
开源的音视频元数据分析工具
数据挖掘·数据分析·音视频