TCGA数据下载推荐:R语言easyTCGA包

#使用easyTCGA获取数据
#清空
rm(list=ls())
gc()
# 安装bioconductor上面的R包
options(BioC_mirror="https://mirrors.tuna.tsinghua.edu.cn/bioconductor")
if(!require("BiocManager")) install.packages("BiocManager")
if(!require("TCGAbiolinks")) BiocManager::install("TCGAbiolinks")
if(!require("SummarizedExperiment")) BiocManager::install("SummarizedExperiment")
if(!require("DESeq2")) BiocManager::install("DESeq2")
if(!require("edgeR")) BiocManager::install("edgeR")
if(!require("limma")) BiocManager::install("limma")
# 安装cran上面的R包
if(!require("survival")) install.packages("survival")
if(!require("broom")) install.packages("broom")
if(!require("devtools")) install.packages("devtools")
if(!require("cli")) install.packages("cli")
#devtools::install_github("ayueme/easyTCGA")
library(easyTCGA)
help(package="easyTCGA")
setwd("F:\\TCGA\\TCGA-COAD")
#下载mRNA、lncRNA和临床信息
COAD<-getmrnaexpr("TCGA-COAD")#原始下载的count, TPM, FPKM 均没有经过log2转化
#下载miRNA
COAD_miRNA<-getmirnaexpr("TCGA-COAD")
#下载copy number variation data
COAD_cnv<-getcnv("TCGA-COAD")
#下载masked somatic mutation 体细胞突变
COAD_snv<-getsnvmaf("TCGA-COAD")
#下载DNA methylation beta value 甲基化数据
getmethybeta("TCGA-COAD")
#从下载目录中打开数据
#差异分析
diff<-diff_analysis(exprset=mrna_expr_counts,#没有经过log2转化
              project="TCGA-COAD",
              save=F)

#批量生存分析
surv<-batch_survival(
  exprset=mrna_expr_counts,
  clin=clin_info,
  is_count = T,
  optimal_cut = TRUE,
  project="TCGA-COAD",
  save_data = FALSE,
  min_sample_size = 5,
  print_index = TRUE
)

#突变分析:瀑布图
#BiocManager::install("maftools")
library(maftools)
maf<-read.maf(snv,clinicalData=clin_snv)
plotmafSummary(maf)
colnames(clin_snv)
oncoplot(maf=maf,
         clinicalFeatures=c("ajcc_pathologic_stage","vital_status"),
         top=10,
         sortByAnnotation=T
)
#绘制KM曲线
dim(mrna_expr_counts)
set.seed(123)
colnames(clin_info)
clin<-data.frame(time=clin_info$days_to_last_follow_up,
                 event=clin_info$vital_status)
clin$event<-ifelse(clin$event=="Alive",0,1)
plot_KM(exprset=mrna_expr_counts, 
        marker="CHPF", #基因
        clin=clin, 
        optimal_cut = TRUE, 
        return_data = TRUE)
#正常和癌症组织基因表达对比箱线图
rownames(mrna_expr_counts)
plot_gene_paired(exprset=mrna_expr_counts, 
                 marker="CHPF", #基因
                 return_data = TRUE)
#比较组间基因表达差异
set.seed(123)
group=sample(c(0,1),524,replace = T)
plot_gene(exprset=mrna_expr_counts, 
          marker=c("CHPF","MAOA"), 
          group=group, 
          return_data = TRUE)
相关推荐
莫叫石榴姐16 分钟前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
亚图跨际2 小时前
Python和R荧光分光光度法
开发语言·python·r语言·荧光分光光度法
请你喝好果汁6415 小时前
单细胞|M3-4. 细胞聚类与轨迹推断
机器学习·数据挖掘·聚类
吾门5 小时前
YOLO入门教程(三)——训练自己YOLO11实例分割模型并预测【含教程源码+一键分类数据集 + 故障排查】
yolo·分类·数据挖掘
电子手信6 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
shansjqun7 小时前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
panpantt3218 小时前
【参会邀请】第二届大数据与数据挖掘国际会议(BDDM 2024)邀您相聚江城!
大数据·人工智能·数据挖掘
statistican_ABin9 小时前
R语言数据分析案例45-全国汽车销售数据分析(可视化与回归分析)
数据挖掘·数据分析
CV学术叫叫兽10 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
网络真危险!!11 小时前
【数据分析】认清、明确
数据挖掘·数据分析