[oneAPI] 手写数字识别-BiLSTM

[oneAPI] 手写数字识别-BiLSTM

比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517

Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/

手写数字识别

使用了pytorch以及Intel® Optimization for PyTorch,通过优化扩展了 PyTorch,使英特尔硬件的性能进一步提升,让手写数字识别问题更加的快速高效

使用MNIST数据集,该数据集包含了一系列以黑白图像表示的手写数字,每个图像的大小为28x28像素,数据集组成如下:

  • 训练集:包含60,000个图像和标签,用于训练模型。
  • 测试集:包含10,000个图像和标签,用于测试模型的性能。

每个图像都被标记为0到9之间的一个数字,表示图像中显示的手写数字。这个数据集常常被用来验证图像分类模型的性能,特别是在计算机视觉领域。

参数与包

python 复制代码
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

加载数据

python 复制代码
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False,
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

模型

python 复制代码
# Bidirectional recurrent neural network (many-to-one)
class BiRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, num_classes)  # 2 for bidirection

    def forward(self, x):
        # Set initial states
        h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)  # 2 for bidirection
        c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)

        # Forward propagate LSTM
        out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size*2)

        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out

训练过程

python 复制代码
model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

# Test the model
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

结果

oneAPI

python 复制代码
import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

# 模型
model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)
相关推荐
数据轨迹00110 天前
AAAI Mesorch:频域增强+自适应剪枝相结合
经验分享·笔记·facebook·oneapi·twitter
数据轨迹00111 天前
ICCV MK-UNet:多核深度可分离卷积医学分割
经验分享·笔记·facebook·oneapi·twitter
Kitfox AI12 天前
【100% AI编程一】KitfoxPay:让 NewAPI 无缝接入 Jeepay 的开源支付适配网关
开源·ai编程·oneapi·newapi·jeepay
数据轨迹00122 天前
CVPR Efficient ViM:视觉 Mamba 的轻量化
经验分享·笔记·facebook·oneapi·twitter
数据轨迹00124 天前
AAAI AMD:多尺度预测MLP反杀Transformer
经验分享·笔记·facebook·oneapi·twitter
数据轨迹0011 个月前
CVPR DarkIR:低光图像增强与去模糊一体化
经验分享·笔记·facebook·oneapi·twitter
IT学习资源每日免费分享1 个月前
Python精选视频教程资料大全
百度·微信·课程设计·oneapi·微信开放平台
努力的小Qin1 个月前
oneapi私有化部署failed to get gpt-3.5-turbo token encoder解决方案
gpt-3·oneapi·fastgpt
数据轨迹0011 个月前
从频域视角重构空洞卷机
经验分享·笔记·facebook·oneapi·twitter
love530love1 个月前
【笔记】Intel oneAPI 开发环境配置
人工智能·windows·笔记·oneapi·onednn·deep neural