机器学习基础之《分类算法(2)—K-近邻算法》

一、K-近邻算法(KNN)

1、定义

KNN

K:就是一个自然数

N:nearest,最近的

N:neighbourhood,邻居

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别

k = 1 容易受到异常点的影响

2、假设有一张北京地图,我不知道我在哪儿,目的是要知道我在北京的哪个区

这是一个分类问题

我不知道我在哪儿,但我知道我跟这几个人之间的距离,并且知道这5个人在哪个区

KNN核心思想:你的"邻居"来推断出你的类别

3、计算距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离

注意:二维空间则是d = sqrt((x2 - x1)^2 + (y2 - y1)^2)

其他距离公式:

曼哈顿距离---绝对值距离

闵可夫斯基距离

4、例子

相关推荐
渡我白衣26 分钟前
C++:链接的两难 —— ODR中的强与弱符号机制
开发语言·c++·人工智能·深度学习·网络协议·算法·机器学习
husterlichf3 小时前
机器学习核心概念详解(回归、分类和聚类)
机器学习·分类·回归·聚类
花月C3 小时前
算法 - 差分
人工智能·算法·机器学习
LO嘉嘉VE7 小时前
学习笔记二:发展历程
机器学习
星谷罗殇11 小时前
(七)TRPO 算法 & PPO 算法
算法·机器学习
搞科研的小刘选手15 小时前
【经济方向专题会议】第二届经济数据分析与人工智能国际学术会议 (EDAI 2025)
人工智能·机器学习·网络安全·大数据分析·经济·经济数据分析·绿色经济
StarPrayers.17 小时前
机器学习中的等高线
人工智能·机器学习
JJJJ_iii17 小时前
【机器学习10】项目生命周期、偏斜类别评估、决策树
人工智能·python·深度学习·算法·决策树·机器学习
rgb2gray17 小时前
共享自行车与电动共享自行车使用中建成环境影响的对比研究:基于合肥数据的时空机器学习分析
人工智能·机器学习·图论·xgboost·shap·gtwr·时空机器学习
jghhh0118 小时前
使用cvx工具箱求解svm的原问题及其对偶问题
人工智能·机器学习·支持向量机