机器学习知识点总结:什么是GBDT(梯度提升树)

什么是GBDT(梯度提升树)

虽然GBDT同样由许多决策树组成,但它与随机森林由许多不同。

其中之一是GBDT中的树都是回归树,树有分类有回归,区分它们的方法很简单。将苹果单纯分为好与坏的是分类树,如果能为苹果的好坏程度打个分,那它就是回归树。

另一个不同的是GBDT中的每棵树都建立在前一棵树的基础上。

以苹果打分为例,我们会先训练一棵树大体预测一下苹果们的分数,再去训练一棵树去预测它们与真实分数间的差距,如果两者相加仍与真实分数存在差距,我们再训练第三棵树预测这部分差距,重复这个过程不断减少误差,将这些树的预测值加起来,就是苹果的分数。

除了苹果,被评分的还可以是网页、电影、商品。通过预测关联程度、点击率或是用户的喜好程度来排序,GBDT在搜索、广告、推荐系统等领域有着广泛应用,能处理标签、数值等各类数据,解释性强,这些都是GBDT的优点。

不过由于树与树之间的相互依赖,需要较长的训练时间。运用多个模型共同解决问题,GBDT自然属于集成学习。

像这种一个模型依赖于上一个模型,共同逼近正确答案的方法被称为Boosting提升,也就是GBDT中的B。

与随机森林类似,模型间相互独立共同投票出结果的方法,则被称为Bagging(装袋)。

还有一种Stacking(堆叠),是在一多个模型的基础上放置一个更高层的模型。将底层模型的输出作为它的输入,由它给出最终的预测结果。

相关推荐
格林威5 分钟前
机器视觉检测如何使用360 度全景成像镜头进行AI 瑕疵检测
人工智能·深度学习·数码相机·机器学习·计算机视觉·视觉检测·相机
互联网之声23 分钟前
崔传波教授:以科技与人文之光,点亮近视患者的清晰视界‌
人工智能
lily363926046a24 分钟前
智联未来 点赋科技
大数据·人工智能
聚客AI25 分钟前
🍬传统工程师转型:智能体架构师的技能图谱
人工智能·agent·mcp
lihuayong26 分钟前
AI赋能金融研报自动化生成:智能体系统架构与实现
人工智能·金融研报自动化
架构师日志27 分钟前
Google开源框架LangExtract实践(1)——Docker部署,免费、低碳、无需GPU、多种大模型灵活切换,绝对可用!
人工智能
嘀咕博客28 分钟前
MiniMax - 稀宇科技推出的AI智能助手
人工智能·科技·ai工具
九章云极AladdinEdu32 分钟前
深度学习优化器进化史:从SGD到AdamW的原理与选择
linux·服务器·开发语言·网络·人工智能·深度学习·gpu算力
dlraba80238 分钟前
Python 实战:票据图像自动矫正技术拆解与落地教程
人工智能·opencv·计算机视觉