python中的svm:介绍和基本使用方法

python中的svm:介绍和基本使用方法

支持向量机(Support Vector Machine,简称SVM)是一种常用的分类算法,可以用于解决分类和回归问题。SVM通过构建一个超平面,将不同类别的数据分隔开,使得正负样本之间的间隔(也称为边缘)最大化。

在Python中,可以使用scikit-learn库来使用SVM。以下是一些基本的使用方法:

python 复制代码
#导入所需的库和模块:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
#加载数据集并进行预处理:
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
#创建SVM分类器并进行训练:
# 创建SVM分类器
svm = SVC(kernel='linear') # 这里使用线性核函数,也可以选择其他类型的核函数,如'rbf'、'poly'等。

# 训练模型
svm.fit(X_train, y_train)
# 使用模型进行预测并评估性能:
# 在测试集上进行预测
y_pred = svm.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

以上是一个简单的SVM分类器的使用示例。在实际应用中,可能需要进行更多的特征工程、模型调参等操作来提高模型的性能。

相关推荐
tokepson2 小时前
关于python更换永久镜像源
python·技术·记录
F_D_Z2 小时前
【解决办法】网络训练报错AttributeError: module ‘jax.core‘ has no attribute ‘Shape‘.
开发语言·python·jax
前端伪大叔2 小时前
第29篇:99% 的量化新手死在挂单上:Freqtrade 隐藏技能揭秘
后端·python·github
韩曙亮3 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
喵叔哟3 小时前
6.配置管理详解
后端·python·flask
曾经的三心草4 小时前
基于正倒排索引的Java文档搜索引擎3-实现Index类-实现搜索模块-实现DocSearcher类
java·python·搜索引擎
MOMO陌染4 小时前
Python 饼图入门:3 行代码展示数据占比
后端·python
vvoennvv5 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
玦尘、5 小时前
《统计学习方法》第4章——朴素贝叶斯法【学习笔记】
笔记·机器学习
自学互联网5 小时前
使用Python构建钢铁行业生产监控系统:从理论到实践
开发语言·python