python中的svm:介绍和基本使用方法

python中的svm:介绍和基本使用方法

支持向量机(Support Vector Machine,简称SVM)是一种常用的分类算法,可以用于解决分类和回归问题。SVM通过构建一个超平面,将不同类别的数据分隔开,使得正负样本之间的间隔(也称为边缘)最大化。

在Python中,可以使用scikit-learn库来使用SVM。以下是一些基本的使用方法:

python 复制代码
#导入所需的库和模块:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
#加载数据集并进行预处理:
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
#创建SVM分类器并进行训练:
# 创建SVM分类器
svm = SVC(kernel='linear') # 这里使用线性核函数,也可以选择其他类型的核函数,如'rbf'、'poly'等。

# 训练模型
svm.fit(X_train, y_train)
# 使用模型进行预测并评估性能:
# 在测试集上进行预测
y_pred = svm.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

以上是一个简单的SVM分类器的使用示例。在实际应用中,可能需要进行更多的特征工程、模型调参等操作来提高模型的性能。

相关推荐
七夜zippoe25 分钟前
Dask:超越内存限制的并行计算——从任务图到分布式调度的实战指南
python·集群·task·array·dataframe·dask
serve the people27 分钟前
python环境搭建 (五) Dockerfile 和 docker-compose.yml 核心作用
java·python·docker
汉克老师35 分钟前
小学生0基础学大语言模型应用(第 19 课《字符串提示词训练(Prompt Thinking)》)
人工智能·深度学习·机器学习·语言模型·prompt·提示词
维构lbs智能定位1 小时前
工厂人员定位(一)融合定位技术如何重构安全生产与效率管理?(含系统架构、技术选型对比、实际应用)
python·物联网·智慧工厂·厂区人员定位系统·工厂人员定位·工厂定位系统
yufuu981 小时前
进阶技巧与底层原理
jvm·数据库·python
2301_817497331 小时前
使用Flask快速搭建轻量级Web应用
jvm·数据库·python
机器学习之心1 小时前
BiLSTM-BP-SVR加权组合模型回归预测四模型对比,对比BiLSTM、BP神经网络、SVR支持向量机回归,MATLAB代码
神经网络·支持向量机·回归·bilstm-bp-svr
Warren981 小时前
Allure 常用装饰器:实战用法 + 最佳实践(接口自动化)
运维·服务器·git·python·单元测试·自动化·pytest
落羽的落羽1 小时前
【Linux系统】文件IO:理解文件描述符、重定向、缓冲区
linux·服务器·开发语言·数据结构·c++·人工智能·机器学习
2401_841495641 小时前
【LeetCode刷题】翻转二叉树
python·算法·leetcode··递归·节点·翻转二叉树