python中的svm:介绍和基本使用方法

python中的svm:介绍和基本使用方法

支持向量机(Support Vector Machine,简称SVM)是一种常用的分类算法,可以用于解决分类和回归问题。SVM通过构建一个超平面,将不同类别的数据分隔开,使得正负样本之间的间隔(也称为边缘)最大化。

在Python中,可以使用scikit-learn库来使用SVM。以下是一些基本的使用方法:

python 复制代码
#导入所需的库和模块:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
#加载数据集并进行预处理:
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
#创建SVM分类器并进行训练:
# 创建SVM分类器
svm = SVC(kernel='linear') # 这里使用线性核函数,也可以选择其他类型的核函数,如'rbf'、'poly'等。

# 训练模型
svm.fit(X_train, y_train)
# 使用模型进行预测并评估性能:
# 在测试集上进行预测
y_pred = svm.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

以上是一个简单的SVM分类器的使用示例。在实际应用中,可能需要进行更多的特征工程、模型调参等操作来提高模型的性能。

相关推荐
暮色尽染几秒前
Python 正则表达式
开发语言·python
IT猿手3 分钟前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解GLSMOP1-GLSMOP9及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·算法·机器学习·matlab·强化学习
幽络源小助理10 分钟前
Python使用requests_html库爬取掌阅书籍(附完整源码及使用说明)
python·html·python爬虫·爬虫教程·requests_html·爬取书籍·掌阅
取个名字真难呐11 分钟前
LossMaskMatrix损失函数掩码矩阵
python·深度学习·矩阵
南宫理的日知录12 分钟前
「Python数据科学」标量、向量、矩阵、张量与多维数组的辨析
python·numpy·数据科学
GZ同学30 分钟前
Arcgis中python工具箱制造要点及统计要素图层字段信息工具分享
python·arcgis
Kenneth風车1 小时前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)111
算法·机器学习·分类
18号房客1 小时前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
北京_宏哥1 小时前
python接口自动化(四十二)- 项目架构设计之大结局(超详解)
python·架构·前端框架
Auc241 小时前
使用scrapy框架爬取微博热搜榜
开发语言·python