AQS源码解读

文章目录


前言

AQS是AbstractQueuedSynchronizer的缩写,也是大神Doug Lea的得意之作。今天我们来进行尽量简化的分析和理解性的代码阅读。


一、AQS是什么?

其实从全称翻译来看,我们其实可以判断出AQS的作用,排队的同步器,或者翻译为"使同步器排队"。所以它的主要作用就是使得线程通过排队的方式进行同步。

二、解读

重点属性

state

state变量是一个volatile的变量,同时内部提供了普通的读写操作,加一个通过Unsafe实现的CAS更写state的方法。CAS更新变量的方法其实就是为了保证对于state变量的更新是线程安全的。

java 复制代码
protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

head、tail

既然是队列,那必然要有头尾节点,我们的头尾节点的类型是一个内部类-Node

java 复制代码
static final class Node {
        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        static final int PROPAGATE = -3;

        /**
         * Status field, taking on only the values:
         *   SIGNAL:     The successor of this node is (or will soon be)
         *               blocked (via park), so the current node must
         *               unpark its successor when it releases or
         *               cancels. To avoid races, acquire methods must
         *               first indicate they need a signal,
         *               then retry the atomic acquire, and then,
         *               on failure, block.
         *   CANCELLED:  This node is cancelled due to timeout or interrupt.
         *               Nodes never leave this state. In particular,
         *               a thread with cancelled node never again blocks.
         *   CONDITION:  This node is currently on a condition queue.
         *               It will not be used as a sync queue node
         *               until transferred, at which time the status
         *               will be set to 0. (Use of this value here has
         *               nothing to do with the other uses of the
         *               field, but simplifies mechanics.)
         *   PROPAGATE:  A releaseShared should be propagated to other
         *               nodes. This is set (for head node only) in
         *               doReleaseShared to ensure propagation
         *               continues, even if other operations have
         *               since intervened.
         *   0:          None of the above
         *
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn't need to
         * signal. So, most code doesn't need to check for particular
         * values, just for sign.
         *
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified using CAS
         * (or when possible, unconditional volatile writes).
         */
        volatile int waitStatus;

        
        volatile Node prev;

        
        volatile Node next;

        /**
         * The thread that enqueued this node.  Initialized on
         * construction and nulled out after use.
         */
        volatile Thread thread;

        /**
         * Link to next node waiting on condition, or the special
         * value SHARED.  Because condition queues are accessed only
         * when holding in exclusive mode, we just need a simple
         * linked queue to hold nodes while they are waiting on
         * conditions. They are then transferred to the queue to
         * re-acquire. And because conditions can only be exclusive,
         * we save a field by using special value to indicate shared
         * mode.
         */
        Node nextWaiter;
        }

Node类呢,几个常量属性还是挺好理解的,最难理解的莫过于waitStatus了。理解了这个,对于如何排队,以及排队的时候需要进行哪些操作也就清楚了。

复制代码
CANCELED:被取消,一般情况是由于同步变量竞争超时或者线程被中断导致的
SIGNAL:说明这个Node的后继节点(继承节点)的thread需要被unpark,也就是唤醒;也就是他的后继节点当前正被阻塞或者待阻塞状态中。
0:初始状态
CONDITION和PROPAGATE先不管了:这俩用在读写锁上的,以后再看看填不填坑

同步变量竞争

acquire

这个方法就是同步变量竞争的最主要方法了。

如果我们自己如果实现排队获取某个属性,最朴素的一般都是直接往队列里添加排队,然后按序处理队列进行同步。但是Doug大神的想法比较全面,而且open。当然也有可能是参考了操作系统里面获取锁的逻辑(我猜的,如果有人知道操作系统层面的做法,可以留言讨论)。Doug大神加了一步tryAcquire。也就是说如果尝试获取失败,再进行排队处理。至于尝试获取是怎么尝试的,需要根据自己的需要进行重写(ReentrantLock、ThreadPoolExecutor等),当然ReentrantLock、ThreadPoolExecutor等类也都是大神自己写的。

而且大神代码精简,如下:

java 复制代码
/**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     * 独占模式下进行获取,至少会执行一次tryAcquire,如果成功了,就返回,否则就把线程排队
     * 可能会重复不停的阻塞和解阻塞,执行tryAcquire,直到成功。
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     */
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

不得不说,注释写得很明白,不过可能很多同学不明白,为什么可能线程会重复阻塞和解阻塞,然后执行tryAcquire呢?

其实是因为即使一个thread被解阻塞(unpark)了,他还是要进行tryAcquire的,但是同时可能正在有新的thread不停加入acquire,然后也在执行tryAcquire,所以unpark了的线程不一定能获取成功,所以如果获取失败,还需要继续unpark。

addWaiter

这个方法没什么复杂的,唯一需要注意的是如果没有头结点,是新建了一个空的Node对象作为head和tail,而不是把当前node设置为head,当前node只会设置为tail。所有设置防止并发,都是通过CAS实现

复制代码
1. 如果tail不为null,就通过CAS的方法设置当前node设置为新的tail,然后返回
2. 如果设置尾结点失败,判断下有没有头结点,如果没有,设置一个空的Node为head和tail,并把当前node设置为新的tail,否则直接把当前node设置为尾结点

acquireQueued

此处也就引入了重复、自旋的概念。

由于所有的Node都排队了,且head并没有关联thread,所以从对头往队尾找thread。
下面这段逻辑是在死循环里的,所以会重复执行,直到获取成功或者由于某些意外情况退出死循环。

复制代码
3. 是否是head的下一个node,如果是就执行tryAcquire,成功了就把自己设置为head,然后把关联的线程置为null,把原来的head设置为孤儿node
4. 如果不是head或tryAcquire失败了,就需要把前置node的waitStatus设置为SIGNAL,然后阻塞自身,暂停执行死循环

大家可能会对shouldParkAfterFailedAcquire方法逻辑感觉奇怪,为啥非要把前置的且非CANCELED的node的waitStatus设置为SIGNAL?最终达到的效果就是只有当前阻塞的node的waitStatus是0,其他前置node的waitStatus都是SIGNAL

其实waitStatus就是为了进行node状态用的,而SIGNAL状态的含义就是【后继node是阻塞的或者即将阻塞的】,也就是说此时是为了进行打标,避免唤醒的时候"惊群"。
!注:哪怕前置node是head,也要把其waitStatus设置为SIGNAL(毕竟默认的是0)
可以发现Doug大神为了防止滥用CPU,消耗性能,如果获取资源失败,并不会立马重试,而是通过LockSupport.park将当前线程进行阻塞,通过waitStatus来标志这个状态。 (不像我们写业务代码,可能就让线程进行不停死循环,直到成功了)

而且Doug大神使用waitStatus这种写法还避免了类似"惊群"的现象,不浪费CPU性能做到了极致

同步变量释放

接下来看release,不过细心的同学一定知道了,release有个最重要的功能就是对一些被阻塞的node进行唤醒,当然就是唤醒SIGNAL的node的下一个非CANCELED的node,而不是所有node,避免"惊群"。

java 复制代码
/**
     * Releases in exclusive mode.  Implemented by unblocking one or
     * more threads if {@link #tryRelease} returns true.
     * This method can be used to implement method {@link Lock#unlock}.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryRelease} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @return the value returned from {@link #tryRelease}
     */
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

和tryAcquire一样,tryRelease是真正执行释放资源的操作,需要实现。

主逻辑就是如果释放成功了,需要唤醒后继第一个非CANCELED的node。
unparkSuccessor

复制代码
1. 将node(此时的node可能是head也可能是被cancel的node)的waitStatus设置为0,因为需要唤醒下一个node成为新的head了
2. 找到后继第一个非CANCELED的node,进行unpark,使得其继续执行acquireQueued,来竞争获取资源

这个方法里最有意思的一个逻辑是如果后继node是一个CANCELED了的node,那么没有继续这个CANCELED的node的next,而是基于tail从后往前找,找到离head最近的SIGNAL状态的node。

原因是因为当某个node被cancelAcquire的时候,会把该节点从队列里移除,但是因为方法逻辑是先设置状态,后移除,移除之后,node的next就会被设置为null。

所以此处基于tail从后往前找的原因就是防止并发导致读取到node的状态是CANCELED,然后后面基于next往后遍历读取到null,而反过来则不会出问题,因为没有把后继节点的pre设置为null。

可以发现,节点被cancelAcquire的时候,只会把prev和当前node的next设置为null,而所有节点的prev指向都没变。所以从后往前找非CANCELED的node一定没问题。

如果某个node被执行了cancelAcquire,也会unpark后继节点。
所以release和cancelAcquire都会unpark后继节点。

总结

竞争资源总体分三步

复制代码
1. 尝试获取资源,成功就返回
2. 失败了的线程封装成Node,加入到队列
3. 加入到队列的Node,不停经历(阻塞-非阻塞-tryAcquire),直到获取资源成功

释放资源分两步

复制代码
4. 尝试释放资源,失败了就返回
5. 释放成功了,需要把头结点的waitStatus置空,唤醒下一个非CANCELED的Node进行资源获取操作
相关推荐
李慕婉学姐3 小时前
【开题答辩过程】以《基于JAVA的校园即时配送系统的设计与实现》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
java·开发语言·数据库
奋进的芋圆5 小时前
Java 延时任务实现方案详解(适用于 Spring Boot 3)
java·spring boot·redis·rabbitmq
sxlishaobin5 小时前
设计模式之桥接模式
java·设计模式·桥接模式
model20055 小时前
alibaba linux3 系统盘网站迁移数据盘
java·服务器·前端
荒诞硬汉5 小时前
JavaBean相关补充
java·开发语言
提笔忘字的帝国5 小时前
【教程】macOS 如何完全卸载 Java 开发环境
java·开发语言·macos
2501_941882486 小时前
从灰度发布到流量切分的互联网工程语法控制与多语言实现实践思路随笔分享
java·开发语言
華勳全栈6 小时前
两天开发完成智能体平台
java·spring·go
alonewolf_996 小时前
Spring MVC重点功能底层源码深度解析
java·spring·mvc
沛沛老爹6 小时前
Java泛型擦除:原理、实践与应对策略
java·开发语言·人工智能·企业开发·发展趋势·技术原理