实践-传统深度学习

简介与安装

  • [2 训练自己的数据集整体流程](#2 训练自己的数据集整体流程)
  • [3 数据加载与预处理](#3 数据加载与预处理)
  • [4 搭建网络模型](#4 搭建网络模型)
  • [5 学习率对结果的影响](#5 学习率对结果的影响)
  • [6 Drop-out操作](#6 Drop-out操作)
  • [7 权重初始化方法对比](#7 权重初始化方法对比)
  • [8 初始化标准差对结果的影响](#8 初始化标准差对结果的影响)
  • [9 正则化对结果的影响](#9 正则化对结果的影响)
  • [10 加载模型进行测试](#10 加载模型进行测试)

TensorFlow:每一步都需要自己做。

Keras:做起来更轻松。任务简单化。

构建代码中使用起来是不一样的。

Caffe适合做图像识别,只有卷积网络,不适合自然语言处理,更新的慢,很多网络没有。

TensorFlow:所有的东西亲力亲为。

Keras:用起来简单,上手非常快。用TensorFlow当做他执行的一个后端。

2 训练自己的数据集整体流程

3 数据加载与预处理

4 搭建网络模型

5 学习率对结果的影响

6 Drop-out操作

7 权重初始化方法对比

用截断高斯分布

8 初始化标准差对结果的影响

9 正则化对结果的影响


10 加载模型进行测试

目前迭代了200次

相关推荐
天涯海风2 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs3 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java4 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV4 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br4 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����5 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine5 小时前
机器学习——数据清洗
人工智能·机器学习
小猿姐6 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生6 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
吱吱企业安全通讯软件7 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯