实践-传统深度学习

简介与安装

  • [2 训练自己的数据集整体流程](#2 训练自己的数据集整体流程)
  • [3 数据加载与预处理](#3 数据加载与预处理)
  • [4 搭建网络模型](#4 搭建网络模型)
  • [5 学习率对结果的影响](#5 学习率对结果的影响)
  • [6 Drop-out操作](#6 Drop-out操作)
  • [7 权重初始化方法对比](#7 权重初始化方法对比)
  • [8 初始化标准差对结果的影响](#8 初始化标准差对结果的影响)
  • [9 正则化对结果的影响](#9 正则化对结果的影响)
  • [10 加载模型进行测试](#10 加载模型进行测试)

TensorFlow:每一步都需要自己做。

Keras:做起来更轻松。任务简单化。

构建代码中使用起来是不一样的。

Caffe适合做图像识别,只有卷积网络,不适合自然语言处理,更新的慢,很多网络没有。

TensorFlow:所有的东西亲力亲为。

Keras:用起来简单,上手非常快。用TensorFlow当做他执行的一个后端。

2 训练自己的数据集整体流程

3 数据加载与预处理

4 搭建网络模型

5 学习率对结果的影响

6 Drop-out操作

7 权重初始化方法对比

用截断高斯分布

8 初始化标准差对结果的影响

9 正则化对结果的影响


10 加载模型进行测试

目前迭代了200次

相关推荐
cylat5 分钟前
Day23 pipeline管道
人工智能·python·算法·机器学习
小天才才36 分钟前
算法岗面试经验分享-大模型篇
人工智能·语言模型·自然语言处理
IOT.FIVE.NO.11 小时前
Conda安装pytorch和cuda出现问题的解决记录
人工智能·pytorch·python
苏苏susuus4 小时前
机器学习:load_predict_project
人工智能·机器学习
科技小E4 小时前
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
人工智能·安全·智能手机
猿饵块5 小时前
视觉slam--框架
人工智能
yvestine6 小时前
自然语言处理——Transformer
人工智能·深度学习·自然语言处理·transformer
SuperW7 小时前
OPENCV图形计算面积、弧长API讲解(1)
人工智能·opencv·计算机视觉
山海不说话7 小时前
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
人工智能·python·计算机视觉·视觉检测
虹科数字化与AR8 小时前
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
人工智能·ar·ar眼镜·船舶智造·数字工作流·智能装配