实践-传统深度学习

简介与安装

  • [2 训练自己的数据集整体流程](#2 训练自己的数据集整体流程)
  • [3 数据加载与预处理](#3 数据加载与预处理)
  • [4 搭建网络模型](#4 搭建网络模型)
  • [5 学习率对结果的影响](#5 学习率对结果的影响)
  • [6 Drop-out操作](#6 Drop-out操作)
  • [7 权重初始化方法对比](#7 权重初始化方法对比)
  • [8 初始化标准差对结果的影响](#8 初始化标准差对结果的影响)
  • [9 正则化对结果的影响](#9 正则化对结果的影响)
  • [10 加载模型进行测试](#10 加载模型进行测试)

TensorFlow:每一步都需要自己做。

Keras:做起来更轻松。任务简单化。

构建代码中使用起来是不一样的。

Caffe适合做图像识别,只有卷积网络,不适合自然语言处理,更新的慢,很多网络没有。

TensorFlow:所有的东西亲力亲为。

Keras:用起来简单,上手非常快。用TensorFlow当做他执行的一个后端。

2 训练自己的数据集整体流程

3 数据加载与预处理

4 搭建网络模型

5 学习率对结果的影响

6 Drop-out操作

7 权重初始化方法对比

用截断高斯分布

8 初始化标准差对结果的影响

9 正则化对结果的影响


10 加载模型进行测试

目前迭代了200次

相关推荐
科普瑞传感仪器18 小时前
从轴孔装配到屏幕贴合:六维力感知的机器人柔性对位应用详解
前端·javascript·数据库·人工智能·机器人·自动化·无人机
说私域18 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的社群运营创新研究
人工智能·小程序·开源
程序员小灰18 小时前
谷歌AI模型Gemini 3.0 Pro,已经杀疯了!
人工智能·aigc·gemini
杨浦老苏18 小时前
AI驱动的图表生成器Next-AI-Draw.io
人工智能·docker·ai·群晖·draw.io
饭饭大王66619 小时前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
John_ToDebug19 小时前
浏览器内核的“智变”:从渲染引擎到AI原生操作系统的征途
人工智能·chrome
用户48021517024719 小时前
Transformer 的技术层面
人工智能
std787919 小时前
Intel Arrow Lake Refresh迎来DDR5‑7200 CUDIMM支持,提升内存兼容性
人工智能
小喵要摸鱼19 小时前
【卷积神经网络】卷积层、池化层、全连接层
人工智能·深度学习·cnn
LO嘉嘉VE19 小时前
学习笔记二十一:深度学习
笔记·深度学习·学习