深入浅出Pytorch函数——torch.nn.init.xavier_normal_

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.nn.init.calculate_gain

· 深入浅出Pytorch函数------torch.nn.init.uniform_

· 深入浅出Pytorch函数------torch.nn.init.normal_

· 深入浅出Pytorch函数------torch.nn.init.constant_

· 深入浅出Pytorch函数------torch.nn.init.ones_

· 深入浅出Pytorch函数------torch.nn.init.zeros_

· 深入浅出Pytorch函数------torch.nn.init.eye_

· 深入浅出Pytorch函数------torch.nn.init.dirac_

· 深入浅出Pytorch函数------torch.nn.init.xavier_uniform_

· 深入浅出Pytorch函数------torch.nn.init.xavier_normal_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_uniform_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_normal_

· 深入浅出Pytorch函数------torch.nn.init.trunc_normal_

· 深入浅出Pytorch函数------torch.nn.init.orthogonal_

· 深入浅出Pytorch函数------torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据Glorot, X.和Bengio, Y.在《Understanding the difficulty of training deep feedforward neural networks》中描述的方法,用一个正态分布生成值,填充输入的张量或变量。结果张量中的值采样自 N ( 0 , std 2 ) N(0, \text{std}^2) N(0,std2)的正态分布,其中标准差:
std = gain × 2 fan_in + fan_put \text{std}=\text{gain}\times\sqrt{\frac{2}{\text{fan\_in}+\text{fan\_put}}} std=gain×fan_in+fan_put2

这种方法也被称为Glorot initialisation。

语法

复制代码
torch.nn.init.xavier_normal_(tensor, gain=1.0)

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor
  • gain :[float] 可选的缩放因子

返回值

一个torch.Tensor且参数tensor也会更新

实例

复制代码
w = torch.empty(3, 5)
nn.init.xavier_normal_(w)

函数实现

复制代码
def xavier_normal_(tensor: Tensor, gain: float = 1.) -> Tensor:
    r"""Fills the input `Tensor` with values according to the method
    described in `Understanding the difficulty of training deep feedforward
    neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal
    distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{N}(0, \text{std}^2)` where

    .. math::
        \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_normal_(w)
    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))

    return _no_grad_normal_(tensor, 0., std)
相关推荐
破烂儿几秒前
基于机器学习的缓存准入策略研究
人工智能·机器学习·缓存
算法打盹中7 分钟前
SimLingo:纯视觉框架下的自动驾驶视觉 - 语言 - 动作融合模型
人工智能·机器学习·计算机视觉·语言模型·自动驾驶
大嘴带你水论文1 小时前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer
IT_陈寒1 小时前
🔥3分钟掌握JavaScript性能优化:从V8引擎原理到5个实战提速技巧
前端·人工智能·后端
格林威1 小时前
棱镜的技术加持:线扫相机如何同时拍RGB和SWIR?
人工智能·深度学习·数码相机·yolo·计算机视觉
JoinApper1 小时前
小白学OpenCV系列3-图像算数运算
人工智能·opencv·计算机视觉
张小九991 小时前
ThermoSeek:热稳定蛋白数据库
人工智能
wzy-6661 小时前
DINOv3 新颖角度解释
人工智能
jie*2 小时前
小杰机器学习(two)——导数、损失函数、斜率极值最值、微分规则、切平面与偏导数、梯度。
人工智能·机器学习
Niuguangshuo2 小时前
深度学习:归一化技术
人工智能·深度学习