leetcode-5-最长回文串

题目描述

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"

输出:"bab"

解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"

输出:"bb"

提示:

1 <= s.length <= 1000

s 仅由数字和英文字母组成

解题思路

要找到最长的回文子串,可以使用动态规划或中心扩展两种方法来解决。下面我将分别介绍这两种方法的思想,并提供使用Scala编写的示例代码。

动态规划方法:

动态规划的思想是利用已知的子问题的解来求解更大规模的问题的解。在这个问题中,我们可以使用一个二维数组 dp,其中 dp(i)(j) 表示从索引 i 到索引 j 的子串是否为回文串。状态转移方程如下:

dp(i)(j) = dp(i+1)(j-1) && s(i) == s(j)

在更新 dp 数组的过程中,需要注意边界条件和更新顺序。

中心扩展方法:

中心扩展的思想是以每个字符或两个字符之间的空隙作为回文串的中心,然后向两边扩展来判断是否为回文串。具体步骤如下:

  • 从左到右遍历每个字符,以当前字符为中心向两边扩展,找到以当前字符为中心的最长回文子串。
  • 从左到右遍历每两个相邻字符之间的空隙,以空隙为中心向两边扩展,找到以空隙为中心的最长回文子串。

使用以上两种方法中的任何一种都可以解决这个问题。下面是使用Scala编写的示例代码,演示了动态规划方法的实现:

scala 复制代码
object Solution {
  def longestPalindrome(s: String): String = {
    val n = s.length
    var start = 0
    var maxLength = 1
    val dp = Array.ofDim[Boolean](n, n)

    for (i <- 0 until n)
      dp(i)(i) = true

    for (length <- 2 to n) {
      for (i <- 0 until n - length + 1) {
        val j = i + length - 1
        if (s(i) == s(j)) {
          if (length == 2 || dp(i + 1)(j - 1)) {
            dp(i)(j) = true
            if (length > maxLength) {
              maxLength = length
              start = i
            }
          }
        }
      }
    }

    s.substring(start, start + maxLength)
  }

  def main(args: Array[String]): Unit = {
    val s1 = "babad"
    val s2 = "cbbd"
    println(longestPalindrome(s1))  // Output: "bab"
    println(longestPalindrome(s2))  // Output: "bb"
  }
}
相关推荐
开发者每周简报40 分钟前
求职市场变化
人工智能·面试·职场和发展
刚学HTML1 小时前
leetcode 05 回文字符串
算法·leetcode
AC使者2 小时前
#B1630. 数字走向4
算法
冠位观测者2 小时前
【Leetcode 每日一题】2545. 根据第 K 场考试的分数排序
数据结构·算法·leetcode
@小码农2 小时前
202411 第十六届蓝桥杯青少组 STEMA 考试真题 汇总
职场和发展·蓝桥杯
古希腊掌管学习的神3 小时前
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
算法·推荐算法
qystca3 小时前
洛谷 P1706 全排列问题 C语言
算法
古希腊掌管学习的神3 小时前
[LeetCode-Python版]相向双指针——611. 有效三角形的个数
开发语言·python·leetcode
浊酒南街3 小时前
决策树(理论知识1)
算法·决策树·机器学习
就爱学编程3 小时前
重生之我在异世界学编程之C语言小项目:通讯录
c语言·开发语言·数据结构·算法