神经网络基础-神经网络补充概念-12-向量化逻辑回归的梯度输出

代码实现

python 复制代码
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

def compute_gradient(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    gradient = X.T.dot(h - y) / m
    return gradient

def batch_gradient_descent(X, y, theta, learning_rate, num_iterations):
    m = len(y)
    losses = []
    
    for _ in range(num_iterations):
        gradient = compute_gradient(X, y, theta)
        theta -= learning_rate * gradient
        
        loss = compute_loss(X, y, theta)
        losses.append(loss)
        
    return theta, losses

# 生成一些模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000

# 执行批量梯度下降(向量化)
theta_optimized, losses = batch_gradient_descent(X, y, theta, learning_rate, num_iterations)

# 打印优化后的参数
print("优化后的参数:", theta_optimized)

# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()

我们首先定义了 compute_gradient 函数,它计算梯度向量。然后,在 batch_gradient_descent 函数中使用向量化的梯度计算,从而避免了循环操作。

这种向量化的梯度计算方法可以有效地处理多个样本,从而提高代码的性能。

相关推荐
QxQ么么15 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐15 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识17 小时前
AI Agent
人工智能
猫头虎17 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子17 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.17 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术17 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java17 小时前
机器学习初级
人工智能·机器学习
陈奕昆17 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
努力改掉拖延症的小白17 小时前
Intel笔记本也能部署大模型(利用Ultra系列gpu通过优化版ollama实现)
人工智能·ai·语言模型·大模型