神经网络基础-神经网络补充概念-12-向量化逻辑回归的梯度输出

代码实现

python 复制代码
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

def compute_gradient(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    gradient = X.T.dot(h - y) / m
    return gradient

def batch_gradient_descent(X, y, theta, learning_rate, num_iterations):
    m = len(y)
    losses = []
    
    for _ in range(num_iterations):
        gradient = compute_gradient(X, y, theta)
        theta -= learning_rate * gradient
        
        loss = compute_loss(X, y, theta)
        losses.append(loss)
        
    return theta, losses

# 生成一些模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000

# 执行批量梯度下降(向量化)
theta_optimized, losses = batch_gradient_descent(X, y, theta, learning_rate, num_iterations)

# 打印优化后的参数
print("优化后的参数:", theta_optimized)

# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()

我们首先定义了 compute_gradient 函数,它计算梯度向量。然后,在 batch_gradient_descent 函数中使用向量化的梯度计算,从而避免了循环操作。

这种向量化的梯度计算方法可以有效地处理多个样本,从而提高代码的性能。

相关推荐
在猴站学算法1 小时前
机器学习(西瓜书) 第二章 模型评估与选择
人工智能·机器学习
科技宅说2 小时前
36氪专访丨乐橙CEO谢运:AI科技下的业务创新与长期主义下的品牌坚守
人工智能·科技
学术小八3 小时前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr
仗剑_走天涯4 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec5 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl5 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji6 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头7 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域8 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊8 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor