修改图像对比度 原理详解

代码调用:

python 复制代码
image = Image.open(os.path.join(filepath,filename))
enhancer = ImageEnhance.Contrast(image)
enhanced_image = enhancer.enhance(2.0)
enhanced_image.save(os.path.join(dest_address, filename))
python 复制代码
class Contrast(_Enhance):
    """Adjust image contrast.

    This class can be used to control the contrast of an image, similar
    to the contrast control on a TV set. An enhancement factor of 0.0
    gives a solid grey image. A factor of 1.0 gives the original image.
    """

    def __init__(self, image):
        self.image = image
        mean = int(ImageStat.Stat(image.convert("L")).mean[0] + 0.5)
        # ImageStat.Stat 函数计算图像的均值,这里是将图像转换为灰度模式("L",即 luminance)后计算的均值。
        # 然后,将计算得到的均值四舍五入取整,存储在变量 mean 中。
        self.degenerate = Image.new("L", image.size, mean).convert(image.mode)
		# 创建一个与传入的图像尺寸相同的新图像,使用先前计算得到的均值填充所有像素,称为 "degenerate" 图像,意思是它是一个像素均值相同的图像。
		# 然后,通过 .convert(image.mode) 将其转换为与原始图像相同的颜色模式,以确保图像通道匹配。
        if "A" in image.getbands():
        # 检查原始图像是否包含透明度通道(Alpha 通道)。透明度通道在图像中通常用于控制像素的透明度级别。
            self.degenerate.putalpha(image.getchannel("A"))
            # 如果图像包含透明度通道,这一行代码将使用 image.getchannel("A") 获取原始图像的 Alpha 通道,并将它应用于 self.degenerate 图像,以使新图像也具有相同的透明度通道。
            # 这样做是为了确保在使用透明度信息的时候,新的 "degenerate" 图像与原始图像一致。

实际是将所有像素均值新单色图片和原图片按blend第三个参数的比例混合。

blend_img = Image.blend(img1, img2, alpha)

blend_img = img1 * (1 -- alpha) + img2* alpha

相关推荐
格林威16 分钟前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖1 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站1 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI1 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技1 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U1 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙1 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人
THMAIL2 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%2 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_2 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习