修改图像对比度 原理详解

代码调用:

python 复制代码
image = Image.open(os.path.join(filepath,filename))
enhancer = ImageEnhance.Contrast(image)
enhanced_image = enhancer.enhance(2.0)
enhanced_image.save(os.path.join(dest_address, filename))
python 复制代码
class Contrast(_Enhance):
    """Adjust image contrast.

    This class can be used to control the contrast of an image, similar
    to the contrast control on a TV set. An enhancement factor of 0.0
    gives a solid grey image. A factor of 1.0 gives the original image.
    """

    def __init__(self, image):
        self.image = image
        mean = int(ImageStat.Stat(image.convert("L")).mean[0] + 0.5)
        # ImageStat.Stat 函数计算图像的均值,这里是将图像转换为灰度模式("L",即 luminance)后计算的均值。
        # 然后,将计算得到的均值四舍五入取整,存储在变量 mean 中。
        self.degenerate = Image.new("L", image.size, mean).convert(image.mode)
		# 创建一个与传入的图像尺寸相同的新图像,使用先前计算得到的均值填充所有像素,称为 "degenerate" 图像,意思是它是一个像素均值相同的图像。
		# 然后,通过 .convert(image.mode) 将其转换为与原始图像相同的颜色模式,以确保图像通道匹配。
        if "A" in image.getbands():
        # 检查原始图像是否包含透明度通道(Alpha 通道)。透明度通道在图像中通常用于控制像素的透明度级别。
            self.degenerate.putalpha(image.getchannel("A"))
            # 如果图像包含透明度通道,这一行代码将使用 image.getchannel("A") 获取原始图像的 Alpha 通道,并将它应用于 self.degenerate 图像,以使新图像也具有相同的透明度通道。
            # 这样做是为了确保在使用透明度信息的时候,新的 "degenerate" 图像与原始图像一致。

实际是将所有像素均值新单色图片和原图片按blend第三个参数的比例混合。

blend_img = Image.blend(img1, img2, alpha)

blend_img = img1 * (1 -- alpha) + img2* alpha

相关推荐
Elastic 中国社区官方博客1 小时前
使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变
大数据·人工智能·elasticsearch·microsoft·搜索引擎·ai·azure
江_小_白2 小时前
自动驾驶之激光雷达
人工智能·机器学习·自动驾驶
yusaisai大鱼4 小时前
TensorFlow如何调用GPU?
人工智能·tensorflow
珠海新立电子科技有限公司6 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董6 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦6 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw7 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐7 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1238 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr8 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络