修改图像对比度 原理详解

代码调用:

python 复制代码
image = Image.open(os.path.join(filepath,filename))
enhancer = ImageEnhance.Contrast(image)
enhanced_image = enhancer.enhance(2.0)
enhanced_image.save(os.path.join(dest_address, filename))
python 复制代码
class Contrast(_Enhance):
    """Adjust image contrast.

    This class can be used to control the contrast of an image, similar
    to the contrast control on a TV set. An enhancement factor of 0.0
    gives a solid grey image. A factor of 1.0 gives the original image.
    """

    def __init__(self, image):
        self.image = image
        mean = int(ImageStat.Stat(image.convert("L")).mean[0] + 0.5)
        # ImageStat.Stat 函数计算图像的均值,这里是将图像转换为灰度模式("L",即 luminance)后计算的均值。
        # 然后,将计算得到的均值四舍五入取整,存储在变量 mean 中。
        self.degenerate = Image.new("L", image.size, mean).convert(image.mode)
		# 创建一个与传入的图像尺寸相同的新图像,使用先前计算得到的均值填充所有像素,称为 "degenerate" 图像,意思是它是一个像素均值相同的图像。
		# 然后,通过 .convert(image.mode) 将其转换为与原始图像相同的颜色模式,以确保图像通道匹配。
        if "A" in image.getbands():
        # 检查原始图像是否包含透明度通道(Alpha 通道)。透明度通道在图像中通常用于控制像素的透明度级别。
            self.degenerate.putalpha(image.getchannel("A"))
            # 如果图像包含透明度通道,这一行代码将使用 image.getchannel("A") 获取原始图像的 Alpha 通道,并将它应用于 self.degenerate 图像,以使新图像也具有相同的透明度通道。
            # 这样做是为了确保在使用透明度信息的时候,新的 "degenerate" 图像与原始图像一致。

实际是将所有像素均值新单色图片和原图片按blend第三个参数的比例混合。

blend_img = Image.blend(img1, img2, alpha)

blend_img = img1 * (1 -- alpha) + img2* alpha

相关推荐
嵌入式老牛10 分钟前
1.0 机器学习实际上是什么
人工智能·机器学习
易晨 微盛·企微管家10 分钟前
汽车行业SCRM:企业微信+服务商模式破解汽车服务行业痛点的案例分析
大数据·人工智能·汽车·产品运营·企业微信
易晨 微盛·企微管家16 分钟前
生鲜电商企业微信私域代运营:从去中心化运营看微盛AI·企微管家SCRM适配案例
人工智能·微信·企业微信
李元豪1 小时前
MetaGPT、AutoGen、XAgent camel仔细对比
人工智能
AndrewHZ1 小时前
【图像处理基石】图像Inpainting入门详解
图像处理·人工智能·深度学习·opencv·transformer·图像修复·inpainting
jiushun_suanli1 小时前
PyTorch CV模型实战全流程(一)
人工智能·pytorch·python
学技术的大胜嗷1 小时前
如何裁剪YOLOv8m的大目标检测头并验证其结构
深度学习·yolo·目标检测·计算机视觉
大千AI助手1 小时前
HOSVD(高阶奇异值分解):高维数据的“解剖术”
人工智能·线性代数·矩阵·张量·svd·hosvd·高阶奇异值分解
mit6.8241 小时前
[nanoGPT] 编排训练 | `get_batch` | AdamW | `get_lr` | 分布式训练(DDP)
人工智能
rengang661 小时前
30-机器学习应用案例:展示机器学习在各行业中的典型应用实例
人工智能·机器学习