自我理解:精度(precision)和召回(recall)

1、精度(precision)

  • 精度 是用于评估分类模型的一个重要指标。它反映了模型预测为正例的样本中,实际真正为正例样本的比例。
    • 【注】正例样本指在二分类问题中,被标注为正类的样本。
      • 例如:在垃圾邮件分类任务中,正例样本就是真实的垃圾邮件。
  • 精度的计算公式
    • 精度 = 正确预测为正例的样本数 / 总预测为正例的样本数
    • 例如,在二分类问题中,如果有100个样本被模型预测为正例,其中80个样本实际真为正例,20个样本被误判。
    • 那么这个模型的精度为:80 / 100 = 80%。
    • 也就是说,这个模型预测为正例的样本中,有80%实际是正例,20%是误报的负例。
  • 精度反映了模型的预测结果中,正类样本所占的比例。它代表了模型的预测准确性和精确度。精度指标越高,说明模型的预测效果越好。
  • 通俗解释
    • 假设班上有50个学生,其中10个学生的数学成绩很好。现在老师让所有学生做一份数学测试,结果通过测试的数学好的学生有8个,通过测试的其他学生有5个。
    • 那么此时,精度 = 测试通过的数学好学生数量 / 总共测试通过的学生数量 = 8 / (8 + 5) = 8 / 13 = 61.5%
    • 精度反映了在全部测试通过的学生中,数学好的学生的比例。

2、召回(recall)

  • 召回是用于评估分类模型效果的一个重要指标。它衡量模型正确识别出正样本的比例。
  • 召回率(recall)也称为真阳性率(True Positive Rate)或敏感度(Sensitivity)。
  • 召回的计算公式
    • 召回率 = 模型预测出的正例样本数 / 所有的正例样本总数
    • 例如,假设有100个正例样本,模型只预测出了其中的80个为正例。
    • 那么这个模型的召回率为:80 / 100 = 80%
  • 召回率反映了分类模型中,所有的正例样本中有多大比例被正确识别出来。它反应了模型检测正例的全面能力。
  • 通俗解释
    • 假设班上有50个学生,其中10个学生的数学成绩很好。现在老师让所有学生做一份数学测试,结果有8个数学成绩好的学生通过了测试。
    • 那么此时,召回率 = 测试通过的数学好学生数量 / 全部数学好学生数量 = 8 / 10 = 80%
    • 召回率反映了在全部的"数学好学生"中,有多大比例通过了测试。

3、精度与召回的区别

  • 精度计算所有被预测为正例样本中,实际为正例样本的比例,反映了模型的精确度;召回计算所有实际为正例样本中,被正确预测为正例的比例,反映了模型的召回能力。
  • 精度倾向于惩罚假正例,召回倾向于惩罚漏报的正例。
  • 提高精度的方法是减少假正例,提高召回的方法是减少漏报正例。
  • 精度和召回往往存在权衡,精度提高时召回降低,反之亦然。评估模型效果时,需要同时考量精度和召回。
  • 在样本不平衡时,由于负例较多,仅考虑精度往往会忽视正例准确率,这时更关注召回。
相关推荐
L.fountain几秒前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
摘星编程11 分钟前
Ascend C编程语言详解:打造高效AI算子的利器
c语言·开发语言·人工智能
DisonTangor22 分钟前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc
hxxjxw37 分钟前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python
Robot侠1 小时前
视觉语言导航从入门到精通(一)
网络·人工智能·microsoft·llm·vln
掘金一周1 小时前
【用户行为监控】别只做工具人了!手把手带你写一个前端埋点统计 SDK | 掘金一周 12.18
前端·人工智能·后端
神州问学1 小时前
世界模型:AI的下一个里程碑
人工智能
zhaodiandiandian1 小时前
AI深耕产业腹地 新质生产力的实践路径与价值彰显
人工智能
古德new1 小时前
openFuyao AI大数据场景加速技术实践指南
大数据·人工智能
youcans_1 小时前
【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
论文阅读·人工智能·大语言模型·多模态·眼底图像