回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)

目录

    • [回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)](#回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图))

效果一览



基本介绍

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;

多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
小鸡吃米…1 天前
机器学习中的随机森林算法
算法·随机森林·机器学习
能源系统预测和优化研究3 天前
传统机器学习(如xgboost、随机森林等)和深度学习(如LSTM等)在时间序列预测各有什么优缺点?
深度学习·随机森林·机器学习
开开心心就好8 天前
OCR识别工具可加AI接口,快捷键截图翻译便捷
java·网络·windows·随机森林·电脑·excel·推荐算法
您好啊数模君10 天前
随机森林算法-数学建模优秀论文算法
随机森林·数学建模
光羽隹衡12 天前
集成学习之随机森林
随机森林·机器学习·集成学习
Pyeako13 天前
机器学习--集成学习之随机森林&贝叶斯算法
python·算法·随机森林·机器学习·集成学习·贝叶斯算法
没有梦想的咸鱼185-1037-166314 天前
面向自然科学的人工智能建模方法【涵盖机器学习与深度学习的核心方法(如随机森林、XGBoost、CNN、LSTM、Transformer等)】
人工智能·深度学习·随机森林·机器学习·数据分析·卷积神经网络·transformer
天辛大师16 天前
2026年丙午年火马年周易运势与AI预测大模型启示录
大数据·人工智能·游戏·随机森林·启发式算法
囊中之锥.18 天前
机器学习:认识随机森林
人工智能·随机森林·机器学习
开开心心就好20 天前
免费卸载工具,可清理残留批量管理启动项
linux·运维·服务器·windows·随机森林·pdf·1024程序员节