回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)

目录

    • [回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)](#回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图))

效果一览



基本介绍

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;

多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
云天徽上4 天前
【机器学习案列】使用随机森林(RF)进行白葡萄酒质量预测
人工智能·随机森林·机器学习
宸码4 天前
【机器学习】【集成学习——决策树、随机森林】从零起步:掌握决策树、随机森林与GBDT的机器学习之旅
人工智能·python·算法·决策树·随机森林·机器学习·集成学习
AI Dog7 天前
数学建模中随机森林分类
人工智能·随机森林·机器学习·数学建模·malab
小鹿( ﹡ˆoˆ﹡ )8 天前
深入解析:Python中的决策树与随机森林
python·决策树·随机森林
程序猿阿伟12 天前
《C++巧铸随机森林:开启智能决策新境界》
开发语言·c++·随机森林
FreedomLeo115 天前
Python机器学习笔记(五、决策树集成)
python·随机森林·机器学习·梯度提升树模型
IT古董16 天前
【机器学习】机器学习的基本分类-监督学习-随机森林(Random Forest)
人工智能·学习·算法·决策树·随机森林·机器学习·分类
Python当打之年17 天前
【机器学习 | 基于Lasso回归和随机森林的上海链家二手房房价预测】
随机森林·机器学习·数据分析·回归·数据可视化
井底哇哇17 天前
XGBoost:从决策树到极限梯度提升树
人工智能·决策树·随机森林·机器学习·集成学习
机器学习之心21 天前
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
人工智能·深度学习·回归·多输入单输出回归预测·attention·ooa-bitcn-bigru