目录

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)

目录

    • [回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)](#回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图))

效果一览



基本介绍

回归预测 | MATLAB实现GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;

多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复GA-RF遗传算法优化随机森林算法多输入单输出回归预测(多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
小森776711 小时前
(五)机器学习---决策树和随机森林
算法·决策树·随机森林·机器学习·分类算法
码媛2 天前
A002-随机森林模型实现糖尿病预测
算法·随机森林·机器学习
拓端研究室TRL5 天前
Python对Airbnb北京与上海链家租房数据用逻辑回归、决策树、岭回归、Lasso、随机森林、XGBoost、神经网络、聚类
python·决策树·随机森林·回归·逻辑回归
zhglhy6 天前
随机森林与决策树
算法·决策树·随机森林
啥都鼓捣的小yao8 天前
Python手写“随机森林”解决鸢尾花数据集分类问题
人工智能·python·算法·随机森林·机器学习·分类
十七算法实验室9 天前
Matlab实现鼠群优化算法优化随机森林算法模型 (ROS-RF)(附源码)
开发语言·算法·决策树·随机森林·机器学习·支持向量机·matlab
机器学习之心11 天前
回归预测 | Matlab实现NRBO-Transformer-LSTM多输入单输出回归预测
matlab·回归·多输入单输出回归预测·transformer
机器学习之心16 天前
回归预测 | Matlab实现NRBO-Transformer-BiLSTM多输入单输出回归预测
matlab·回归·多输入单输出回归预测·transformer·bilstm·nrbo
Suc_zhan16 天前
实验二 如何将随机森林算法应用于激酶抑制剂分类任务
python·算法·随机森林·机器学习
数科星球18 天前
进军场景智能体,云迹机器人又快了一步
随机森林·逻辑回归·散列表·启发式算法·模拟退火算法