随机森林

做科研的周师兄2 天前
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点对于刚入门机器学习的同学来说,在掌握了决策树之后,很容易遇到 “单棵决策树泛化能力不足” 的问题。而随机森林作为基于决策树的集成学习模型,恰好能解决这一痛点,成为工业界和竞赛中常用的 “利器”。今天我们就从基础概念出发,一步步拆解随机森林的核心原理、关键技术和特点,帮你轻松入门这个实用模型。
码上地球6 天前
大数据·随机森林·支持向量机
大数据成矿预测系列(四) | 成矿预测的“主力军”:随机森林与支持向量机深度解析随着地球科学进入大数据时代,传统的矿产勘查方法正面临着一场深刻的变革。从传统的统计学模型到现代的机器学习模型,成矿预测正经历着范式的转变。现代勘探工作流需要整合来源多样、结构复杂的海量数据集,包括地质填图、地球物理、地球化学以及高分辨率遥感影像 (当然还有钻孔数据等其他数据)。在这一背景下,机器学习是将这些海量数据转化为精准成矿预测图 (Mineral Prospectivity Mapping, MPM) 的核心引擎。
天桥下的卖艺者7 天前
前端·随机森林·r语言·shiny
R语言基于shiny开发随机森林预测模型交互式 Web 应用程序(应用程序)随机森林(Breiman 2001a)(RF)是一种非参数统计方法,需要没有关于响应的协变关系的分布假设。RF是一种强大的、非线性的技术,通过拟合一组树来稳定预测精度模型估计。
rengang668 天前
人工智能·算法·随机森林·机器学习·集成学习
09-随机森林:介绍集成学习中通过多决策树提升性能的算法随机森林(Random Forest)是一种在机器学习领域中广泛应用的集成学习算法,通过结合多个决策树的预测结果来提升整体模型的性能。集成学习的核心思想在于"集体智慧",即通过多个模型的协同作用,弥补单一模型的不足,从而获得更稳定、更准确的预测结果。
没有口袋啦17 天前
人工智能·算法·决策树·随机森林·机器学习
《决策树、随机森林与模型调优》在开始之前,请确保你的环境已准备好,并花点时间了解我们将要使用的数据。核心目标:理解并实现决策树分类器,完成鸢尾花分类任务。
heeheeai18 天前
算法·决策树·随机森林·kotlin·boost
决策树,随机森林,boost森林算法欢迎访问我的主页: https://heeheeaii.github.io/
码银20 天前
随机森林·数据挖掘·回归
【数据挖掘】基于随机森林回归模型的二手车价格预测分析(数据集+源码)本研究运用随机森林回归模型对汽车价格进行预测。通过对包含多种汽车属性的数据集进行预处理,包括对分类变量的独热编码,将其划分为训练集与测试集。利用训练集数据拟合随机森林模型,并使用测试集数据进行预测与评估。同时,借助多种可视化手段深入分析模型性能与数据特征。 数据集:https://pan.quark.cn/s/20eb55d25902 数据源:https://www.kaggle.com/datasets/vrajesh0sharma7/used-car-price-prediction
九章云极AladdinEdu24 天前
人工智能·随机森林·机器学习·强化学习·集成学习·boosting·ai研究
集成学习智慧:为什么Bagging(随机森林)和Boosting(XGBoost)效果那么好?在机器学习的世界里,有一个令人着迷的现象:通过组合多个相对简单的模型,往往能够获得比单个复杂模型更好的性能。这就是集成学习(Ensemble Learning)的核心思想——“三个臭皮匠,顶个诸葛亮”。
max5006001 个月前
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析在本任务中,我们拥有一组关于农作物及其对应根系土的数据。数据包含土壤中各种元素的数值型测量值(自变量)以及农作物中两种特定元素的含量(因变量)。我们的核心目标是:
THMAIL1 个月前
python·随机森林·机器学习·分类·bootstrap·bert·transformer
机器学习从入门到精通 - Transformer颠覆者:BERT与预训练模型实战解析开场白:点燃你的NLP革命之火朋友们,如果你还在用RNN、LSTM和GRU吭哧吭哧地处理文本任务,看着那缓慢的训练速度和捉襟见肘的长程依赖建模能力发愁——停!是时候拥抱颠覆者了。Transformer,这个2017年横空出世的架构,彻底重塑了自然语言处理的格局。而站在巨人肩膀上的BERT及其引发的大规模预训练模型浪潮,则直接让NLP进入了“工业化生产”时代。这篇长文不是蜻蜓点水的概念介绍,我们要撸起袖子,深入BERT的骨髓,从理论推导到代码实战,亲手搭建、训练、微调,并直面那些官方文档很少提及的“坑”。准
THMAIL1 个月前
人工智能·python·算法·随机森林·机器学习·集成学习·sklearn
机器学习从入门到精通 - 集成学习核武器:随机森林与XGBoost工业级应用记得我第一次接触集成学习,盯着那一堆决策树发懵 —— 这玩意儿怎么就能比单个模型强那么多?直到在真实业务数据上栽了跟头才明白,模型的世界里孤胆英雄往往走不远。今天咱们就掰开揉碎了聊聊集成学习里的两员悍将:随机森林和XGBoost。我敢拍胸脯说,这俩家伙在工业界的地位,堪比车间里的万能扳手。这篇长文会带你从原理到代码,从调参到避坑,彻底搞懂它们怎么把预测精度拉满。对了,还有个细节 —— 我会把那些深夜debug才发现的坑点全抖出来,省得你重蹈覆辙。
背包客研究1 个月前
随机森林·支持向量机·逻辑回归
逻辑回归 vs 支持向量机 vs 随机森林:哪个更适合小数据集?当你有一个小数据集时,选择合适的机器学习模型可以产生很大的影响。三个流行的选择是逻辑回归、支持向量机(SVM)和随机森林。每一个都有其优点和缺点。逻辑回归易于理解和快速训练,SVM擅长找到明确的决策边界,而随机森林擅长处理复杂的模式,但最佳选择通常取决于你的数据的大小和性质。
THMAIL1 个月前
人工智能·python·决策树·随机森林·机器学习·分类·bootstrap
机器学习从入门到精通 - 降维艺术:PCA与t-SNE带你玩转高维数据可视化想象一下你面前摆着成百上千个特征的数据集,密密麻麻的数字像一团纠缠的毛线。你想看清它的结构?想发现隐藏的模式?高维数据就像锁在迷宫里的秘密,而降维就是你手中的万能钥匙。今天我们不聊玄学,就扎扎实实带你用PCA和t-SNE这两把利器,把高维数据压扁、摊开、变成肉眼可见的瑰丽图谱 —— 相信我,当你第一次看到杂乱的数据点在二维平面上凝聚成清晰的星云、星团时,那种感觉堪比发现新大陆!
xz2024102****1 个月前
决策树·随机森林·机器学习
吴恩达机器学习补充:决策树和随机森林数据集:通过网盘分享的文件:sonar-all-data.csv 链接: https://pan.baidu.com/s/1D3vbcnd6j424iAwssYzDeQ?pwd=12gr 提取码: 12gr
计算机源码社2 个月前
随机森林·机器学习·网络爬虫·课程设计·数据可视化·python项目·毕业设计源码
计算机毕设项目 基于Python与机器学习的B站视频热度分析与预测系统 基于随机森林算法的B站视频内容热度预测系统💕💕作者:计算机源码社 💕💕个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Spark、hadoop、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流! 💕💕学习资料、程序开发、技术解答、文档报告 💕💕如需要源码,可以扫取文章下方二维码联系咨询
THMAIL2 个月前
人工智能·算法·决策树·随机森林·分类·bootstrap·sklearn
随机森林的 “Bootstrap 采样” 与 “特征随机选择”:如何避免过拟合?(附分类 / 回归任务实战)在机器学习的旅程中,我们常常会遇到一个“敌人”——过拟合(Overfitting)。想象一个学生,他只会死记硬背老师划定的考试范围和标准答案。在模拟考试(训练数据)中,他总能考满分,因为题目一模一样。可一旦到了正式考场(测试数据),题目稍微变换一下形式,他就束手无策,成绩一落千丈。
feifeigo1232 个月前
算法·随机森林·matlab
matlab中随机森林算法的实现基于MATLAB实现随机森林算法参数说明:输出对象属性:参考仿真代码 matlab中随机森林算法的实现 www.youwenfan.com/contentcsd/65107.html
尤超宇2 个月前
算法·随机森林·分类
基于随机森林的红酒分类与特征重要性分析红酒作为一种历史悠久的饮品,其品质和种类的鉴别一直是酿酒业、餐饮业及消费者关注的焦点。传统的红酒分类主要依赖品酒师的感官评价,这种方式不仅耗时耗力,还容易受到主观因素的影响。随着数据科学和机器学习的发展,利用红酒的理化特征进行自动分类成为可能。本文将以经典的红酒数据集为例,展示如何使用随机森林算法实现红酒的精准分类,并深入分析影响分类结果的关键特征。
像风一样自由20202 个月前
算法·随机森林·支持向量机
五种算法详解(SVM / Logistic Regression / kNN / Random Forest / HistGradientBoosting)本文介绍项目中横向对比与投票集成所用的五种经典算法:技术原理、关键超参数、优缺点、适用场景、在本项目的推荐配置与常见陷阱。
啊阿狸不会拉杆2 个月前
数据结构·c++·算法·随机森林
《算法导论》第 21 章-用于不相交集合的数据结构不相交集合(Disjoint Set),也称为并查集(Union-Find),是一种非常实用的数据结构,主要用于处理一些元素分组的问题。它支持高效的集合合并和元素查找操作,在很多算法中都有重要应用,如 Kruskal 最小生成树算法、图的连通性问题、等价关系问题等。