大数据成矿预测系列(四) | 成矿预测的“主力军”:随机森林与支持向量机深度解析随着地球科学进入大数据时代,传统的矿产勘查方法正面临着一场深刻的变革。从传统的统计学模型到现代的机器学习模型,成矿预测正经历着范式的转变。现代勘探工作流需要整合来源多样、结构复杂的海量数据集,包括地质填图、地球物理、地球化学以及高分辨率遥感影像 (当然还有钻孔数据等其他数据)。在这一背景下,机器学习是将这些海量数据转化为精准成矿预测图 (Mineral Prospectivity Mapping, MPM) 的核心引擎。