【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

这是一份关于一些经典和新的稀疏度量方法(包括峰度、基尼指数、负熵、Lp/Lq范数、p-q均值、GI2、GI3、广义基尼指数、Box-cox稀疏度量等)。还介绍了自适应稀疏度量方法和RQAM统计特征等更多功能。

这些是稀疏性度量、自适应加权信号预处理技术、自适应稀疏性度量和 RQAM 特征的代码。以基于西安大轴承数据集2-3的图解作为实现示例。

论文[1]是对稀疏性措施的理论研究,并在论文[1]中给出了新的框架RQAM。论文 [2]是一种相关的新方法,它使稀疏性措施能够同时实现明确的早期故障检测和单调退化评估。论文 [3-4] 是使用 RQAM 生成的新的稀疏性度量。我相信通过使用 RQAM 可以轻松生成新的稀疏性度量。

值得指出的是,已经有新的期刊论文发表,其技术路线/基础与作品高度相关[1]和[2]。在这些已发表的论文中开发了一些新的稀疏性度量和RUL预测方法。

1\] 侯斌, 王丹, 夏涛, 王彦, 赵彦, 徐国强, 机器状态监测准算术方法研究, 机械系统信号处理. 151 (2021) 107451. [Redirecting](https://doi.org/10.1016/j.ymssp.2020.107451 "Redirecting") \[2\] 侯斌, 王丹, 王彦, 闫彤, 彭志, K.-L.Tsui,用于机器健康监测的自适应加权信号预处理技术,IEEE Trans. Instrum。测量 70 (2021) 1--11。[Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring \| IEEE Journals \& Magazine \| IEEE Xplore](https://doi.org/10.1109/TIM.2020.3033471 "Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring | IEEE Journals & Magazine | IEEE Xplore") \[3\] 侯斌, 王丹, 闫彤, 王彦, 彭志, K.-L.Tsui,基尼指数II.和III.:两种新的稀疏性措施及其在机器状态监测中的应用,IEEE/ASME Trans.机电一体化。4435 (2021) 1--1.[Gini Indices II and III: Two new Sparsity Measures and Their Applications to Machine Condition Monitoring \| IEEE Journals \& Magazine \| IEEE Xplore](https://doi.org/10.1109/TMECH.2021.3100532 "Gini Indices II and III: Two new Sparsity Measures and Their Applications to Machine Condition Monitoring | IEEE Journals & Magazine | IEEE Xplore") \[4\] 侯斌, 王丹, 夏彤, L. Xi, Z. Peng, K. Tsui, 广义基尼指数:用于机器状态监测的Box-Cox稀疏性测量的补充稀疏性措施,机械系统信号过程。 169 (2022) 108751. [Redirecting](https://doi.org/10.1016/j.ymssp.2021.108751 "Redirecting") ![](https://file.jishuzhan.net/article/1694246028762419201/b5af81b3023148319f76a1108ca97ae2.png) ![](https://file.jishuzhan.net/article/1694246028762419201/894d65644afa460dbcc762113b2404c9.png) ## **📚** **2 运行结果** ![](https://file.jishuzhan.net/article/1694246028762419201/f064a9de67aa41f8a5dc25dec11cdc5b.png) ![](https://file.jishuzhan.net/article/1694246028762419201/50ea1a983da949a09ebb372f80b22292.png) ![](https://file.jishuzhan.net/article/1694246028762419201/1b0aa3fa61ca407aac5f78ac59b643ae.png) 部分代码: FeatureVect(:,i) = RQAMfeature(SE,HealthySignal); % % It returns the adaptive % SM feature vector whose length =11 and RQAM feature whose length is % also 12. So, FeatureVect(1:12,i) is adaptive SM feature vector, % FeatureVect(13:end,i) is RQAM feature vector end %% Plot SM features for machine condition monitoring figure, for i = 1:12 subplot(3,4,i), plot(SparMeaVect(i,:)) end %% Adaptive SM features for machine condition monitoring figure, for i = 1:12 subplot(3,4,i), plot(FeatureVect(i,:)) end %% RQAM features for machine condition monitoring figure, for i = 1:11 subplot(3,4,i), plot(FeatureVect(12+i,:)) end ## ****🎉3**** ****参考文献**** > 文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。 \[1\] 侯斌, 王丹, 夏涛, 王彦, 赵彦, 徐国强, 机器状态监测准算术方法研究, 机械系统信号处理. 151 (2021) 107451. [Redirecting](https://doi.org/10.1016/j.ymssp.2020.107451 "Redirecting") \[2\] 侯斌, 王丹, 王彦, 闫彤, 彭志, K.-L.Tsui,用于机器健康监测的自适应加权信号预处理技术,IEEE Trans. Instrum。测量 70 (2021) 1--11。[Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring \| IEEE Journals \& Magazine \| IEEE Xplore](https://doi.org/10.1109/TIM.2020.3033471 "Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring | IEEE Journals & Magazine | IEEE Xplore") \[3\] 侯斌, 王丹, 闫彤, 王彦, 彭志, K.-L.Tsui,基尼指数II.和III.:两种新的稀疏性措施及其在机器状态监测中的应用,IEEE/ASME Trans.机电一体化。4435 (2021) 1--1.[Gini Indices II and III: Two new Sparsity Measures and Their Applications to Machine Condition Monitoring \| IEEE Journals \& Magazine \| IEEE Xplore](https://doi.org/10.1109/TMECH.2021.3100532 "Gini Indices II and III: Two new Sparsity Measures and Their Applications to Machine Condition Monitoring | IEEE Journals & Magazine | IEEE Xplore") \[4\] 侯斌, 王丹, 夏彤, L. Xi, Z. Peng, K. Tsui, 广义基尼指数:用于机器状态监测的Box-Cox稀疏性测量的补充稀疏性措施,机械系统信号过程。 169 (2022) 108751. [Redirecting](https://doi.org/10.1016/j.ymssp.2021.108751 "Redirecting") ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
哈__几秒前
CANN多模型并发部署方案
人工智能·pytorch
rit84324991 分钟前
MATLAB中Teager能量算子提取与解调信号的实现
开发语言·matlab
予枫的编程笔记2 分钟前
【Linux入门篇】Linux运维必学:Vim核心操作详解,告别编辑器依赖
linux·人工智能·linux运维·vim操作教程·程序员工具·编辑器技巧·新手学vim
慢半拍iii3 分钟前
对比分析:ops-nn与传统深度学习框架算子的差异
人工智能·深度学习·ai·cann
心疼你的一切5 分钟前
解构CANN仓库:AIGC API从底层逻辑到实战落地,解锁国产化AI生成算力
数据仓库·人工智能·深度学习·aigc·cann
我找到地球的支点啦13 分钟前
通信扩展——扩频技术(超级详细,附带Matlab代码)
开发语言·matlab
啊阿狸不会拉杆13 分钟前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
薯一个蜂蜜牛奶味的愿13 分钟前
模块化显示神经网络结构的可视化工具--BlockShow
人工智能·深度学习·神经网络
班德先生17 分钟前
深耕多赛道品牌全案策划,为科技与时尚注入商业表达力
大数据·人工智能·科技
哈__17 分钟前
CANN加速强化学习推理:策略网络与价值网络优化
人工智能