图像检索,目标检测map的实现

一、图像检索指标Rank1,map

参考:https://blog.csdn.net/weixin_41427758/article/details/81188164?spm=1001.2014.3001.5506

1.Rank1:

rank-k:算法返回的排序列表中,前k位为存在检索目标则称为rank-k命中。

常用的为rank1:首位为检索目标则rank-1命中。

2.map

mAP(mean average precision):反应检索的人在数据库中所有正确的图片排在排序列表前面的程度,能更加全面的衡量ReID算法的性能。如下图,该检索行人在gallery中有4张图片,在检索的list中位置分别为1、2、5、7,则ap为(1 / 1 + 2 / 2 + 3 / 5 + 4 / 7) / 4 =0.793;ap较大时,该行人的检索结果都相对靠前,对所有query的ap取平均值得到mAP

二、目标检测map

参考:目标检测mAP计算以及coco评价标准_哔哩哔哩_bilibili

目标检测中map的计算_map计算公式_RooKiChen的博客-CSDN博客

预测框先经过nms处理,然后计算TP,FP,FN。常见的map0.5,其中0.5是iou的阈值,与置信度无关。预测框与真实框的iou大于阈值为TP,小于阈值为FP。

  • TP: IoU>thread的检测框数量(同一Ground Truth只计算一次)
  • FP: IoU<=thread的检测框,或者是检测到同一个GT的多余检测框的数量
  • FN: 没有检测到的GT的数量

对于要预测的样本,比如说有7个真实框需要预测,预测框 预测框与真实框的iou大于阈值记为True,小于阈值记为Fasle,将他们按照类别置信度排序,如下图,然后选不同大小的类别置信度作为分界线

1.类别置信度选0.98,如图,此时TP = 1,FP=0,FN=7-1=6

2.类别置信度选0.89,此时TP=2,FP=0,FN=7-2=5

........

分别得到若干个precision,recall,绘制PR曲线

对于同一Recall,不同的Precision,选最大的Precision,如下图

相关推荐
i爱校对8 分钟前
爱校对团队服务全新升级
人工智能
KL1328815269314 分钟前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel199016 分钟前
人工智能的7大应用领域
人工智能
人工智能训练31 分钟前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器
南蓝43 分钟前
【AI 日记】调用大模型的时候如何按照 sse 格式输出
前端·人工智能
robot_learner1 小时前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
Mintopia1 小时前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae
后端小张1 小时前
【AI 学习】从0到1深入理解Agent AI智能体:理论与实践融合指南
人工智能·学习·搜索引擎·ai·agent·agi·ai agent
Mintopia1 小时前
🧩 Claude Code Hooks 最佳实践指南
人工智能·claude·全栈
星空的资源小屋1 小时前
极速精准!XSearch本地文件搜索神器
javascript·人工智能·django·电脑