图像检索,目标检测map的实现

一、图像检索指标Rank1,map

参考:https://blog.csdn.net/weixin_41427758/article/details/81188164?spm=1001.2014.3001.5506

1.Rank1:

rank-k:算法返回的排序列表中,前k位为存在检索目标则称为rank-k命中。

常用的为rank1:首位为检索目标则rank-1命中。

2.map

mAP(mean average precision):反应检索的人在数据库中所有正确的图片排在排序列表前面的程度,能更加全面的衡量ReID算法的性能。如下图,该检索行人在gallery中有4张图片,在检索的list中位置分别为1、2、5、7,则ap为(1 / 1 + 2 / 2 + 3 / 5 + 4 / 7) / 4 =0.793;ap较大时,该行人的检索结果都相对靠前,对所有query的ap取平均值得到mAP

二、目标检测map

参考:目标检测mAP计算以及coco评价标准_哔哩哔哩_bilibili

目标检测中map的计算_map计算公式_RooKiChen的博客-CSDN博客

预测框先经过nms处理,然后计算TP,FP,FN。常见的map0.5,其中0.5是iou的阈值,与置信度无关。预测框与真实框的iou大于阈值为TP,小于阈值为FP。

  • TP: IoU>thread的检测框数量(同一Ground Truth只计算一次)
  • FP: IoU<=thread的检测框,或者是检测到同一个GT的多余检测框的数量
  • FN: 没有检测到的GT的数量

对于要预测的样本,比如说有7个真实框需要预测,预测框 预测框与真实框的iou大于阈值记为True,小于阈值记为Fasle,将他们按照类别置信度排序,如下图,然后选不同大小的类别置信度作为分界线

1.类别置信度选0.98,如图,此时TP = 1,FP=0,FN=7-1=6

2.类别置信度选0.89,此时TP=2,FP=0,FN=7-2=5

........

分别得到若干个precision,recall,绘制PR曲线

对于同一Recall,不同的Precision,选最大的Precision,如下图

相关推荐
robot_learner4 分钟前
OpenClaw, 突然走红的智能体
人工智能
ujainu小4 分钟前
CANN仓库内容深度解读:昇腾AI生态的基石与AIGC发展的引擎
人工智能·aigc
rcc86286 分钟前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠11 分钟前
【无标题】
人工智能·深度学习·机器学习
callJJ20 分钟前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型
是店小二呀35 分钟前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
冻感糕人~38 分钟前
收藏备用|小白&程序员必看!AI Agent入门详解(附工业落地实操关联)
大数据·人工智能·架构·大模型·agent·ai大模型·大模型学习
予枫的编程笔记41 分钟前
【Linux入门篇】Ubuntu和CentOS包管理不一样?apt与yum对比实操,看完再也不混淆
linux·人工智能·ubuntu·centos·linux包管理·linux新手教程·rpm离线安装
陈西子在网上冲浪42 分钟前
当全国人民用 AI 点奶茶时,你的企业官网还在“人工建站”吗?
人工智能
victory043144 分钟前
hello_agent第九章总结
人工智能·agent