图像检索,目标检测map的实现

一、图像检索指标Rank1,map

参考:https://blog.csdn.net/weixin_41427758/article/details/81188164?spm=1001.2014.3001.5506

1.Rank1:

rank-k:算法返回的排序列表中,前k位为存在检索目标则称为rank-k命中。

常用的为rank1:首位为检索目标则rank-1命中。

2.map

mAP(mean average precision):反应检索的人在数据库中所有正确的图片排在排序列表前面的程度,能更加全面的衡量ReID算法的性能。如下图,该检索行人在gallery中有4张图片,在检索的list中位置分别为1、2、5、7,则ap为(1 / 1 + 2 / 2 + 3 / 5 + 4 / 7) / 4 =0.793;ap较大时,该行人的检索结果都相对靠前,对所有query的ap取平均值得到mAP

二、目标检测map

参考:目标检测mAP计算以及coco评价标准_哔哩哔哩_bilibili

目标检测中map的计算_map计算公式_RooKiChen的博客-CSDN博客

预测框先经过nms处理,然后计算TP,FP,FN。常见的map0.5,其中0.5是iou的阈值,与置信度无关。预测框与真实框的iou大于阈值为TP,小于阈值为FP。

  • TP: IoU>thread的检测框数量(同一Ground Truth只计算一次)
  • FP: IoU<=thread的检测框,或者是检测到同一个GT的多余检测框的数量
  • FN: 没有检测到的GT的数量

对于要预测的样本,比如说有7个真实框需要预测,预测框 预测框与真实框的iou大于阈值记为True,小于阈值记为Fasle,将他们按照类别置信度排序,如下图,然后选不同大小的类别置信度作为分界线

1.类别置信度选0.98,如图,此时TP = 1,FP=0,FN=7-1=6

2.类别置信度选0.89,此时TP=2,FP=0,FN=7-2=5

........

分别得到若干个precision,recall,绘制PR曲线

对于同一Recall,不同的Precision,选最大的Precision,如下图

相关推荐
骥龙29 分钟前
XX汽集团数字化转型:全生命周期网络安全、数据合规与AI工业物联网融合实践
人工智能·物联网·web安全
zskj_qcxjqr35 分钟前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
Ven%38 分钟前
第一章 神经网络的复习
人工智能·深度学习·神经网络
研梦非凡1 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代1 小时前
多目标轮廓匹配
人工智能·opencv·计算机视觉
每日新鲜事1 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能
空白到白1 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
中新赛克2 小时前
双引擎驱动!中新赛克AI安全方案入选网安创新大赛优胜榜单
人工智能·安全
飞哥数智坊2 小时前
解决AI幻觉,只能死磕模型?OpenAI给出不一样的思路
人工智能·openai
聚客AI2 小时前
🌈多感官AI革命:解密多模态对齐与融合的底层逻辑
人工智能·llm·掘金·日新计划