Langchain+LLM

LangChain是一个开源框架 ,允许开发人员在与人工智能(AI)一起工作时将大型语言模型(如GPT4)与外部计算和数据源相结合(它提供了一套工具、组件和接口,可简化创建由LLM提供支持的应用程序)。该框架目前提供Python和Js两种版本。

Langchain的核心模块如下:

  • Modules:支持的模型类型和集成,如:openai,huggingface等;
  • Prompt:提示词管理、优化和序列化,支持各种自定义模板;
  • Memory:内存管理(在链/代理调用之间持续存在的状态);
  • Indexes:索引管理,方便加载、查询和更新外部数据;
  • Agents:代理,是一个链,可以决定和执行操作,并观察结果,直到指令完成;
  • Callbacks:回调,允许记录和流式传输任何链的中间步骤,方便观察、调试和评估。

到目前为止,我们都知道ChatGPT(GPT4)拥有令人印象深刻的广泛知识,我们几乎可以询问任何问题,都能得到相当不错的答案。假设想从自己的数据、自己的文档中获取特定的信息,这可能是一本书、一个PDF文件、一个带有专有信息的数据库,LangChain允许我们连接像GPT4这样的大型语言模型到自己的数据源中。这里我们不是指将文本文档的片段粘贴到ChatGPT中,而是将LLM指引到我们自己的数据源。

Langchain+LLM为无数的实际应用打开了大门,我们可以将其与数据分析领域中的数据相连接,通过LLM为我们分析数据,给出我们想要的答案。

下面是一个ChatGLM+Langchain的项目:https://github.com/chatchat-space/Langchain-Chatchat

项目实现原理如下图所示,过程包括:加载文件 > 读取文本 > 文本分割 > 文本向量化 > 问句向量化 > 在文本向量中匹配出与问句向量最相似的 top k个 > 匹配出的文本作为上下文和问题一起添加到prompt中 > 提交给 LLM生成回答。

从文档处理角度来看,实现流程如下:

相关推荐
Dr_哈哈1 小时前
【实战】LangChain 难懂?用 Trae 智能编辑器 10 分钟速成
langchain·node.js·trae
python零基础入门小白4 小时前
2025年大模型面试通关秘籍!大厂高频LLMs真题全解析,一文掌握,助你轻松斩获心仪offer!
开发语言·人工智能·语言模型·架构·langchain·大模型教程·大模型面试
songyuc5 小时前
LangChain学习笔记
学习·langchain
SakuraOnTheWay9 小时前
LangChain实践:初识LangChain
langchain
Fuly102410 小时前
langchain基础教程(6)---构建知识库--①向量数据库-chromadb
数据库·langchain
大模型真好玩11 小时前
LangChain1.0实战之多模态RAG系统(三)——多模态RAG系统PDF解析功能实现
人工智能·langchain·agent
红蒲公英11 小时前
( 教学 )Agent 构建 Prompt(提示词)2. CommaSeparatedListOutputParser
人工智能·python·langchain·prompt·langgraph
Cisyam^20 小时前
openGauss + LangChain Agent实战:从自然语言到SQL的智能数据分析助手
sql·数据分析·langchain
Elastic 中国社区官方博客21 小时前
使用 LangChain 和 Elasticsearch 开发一个 agentic RAG 助手
大数据·人工智能·elasticsearch·搜索引擎·ai·langchain·全文检索
学历真的很重要1 天前
Hello-Agents —— 03大语言模型基础 通俗总结
开发语言·人工智能·后端·语言模型·自然语言处理·面试·langchain