windows下xinference无法加载本地大模型问题解决

一、打开C盘权限

1 打开【开始】菜单

2 找到windows工具,打开

3 找到命令行

4 右键

5 以管理员身份运行

6 输入:icacls frpc_windows_amd64_v0.2 /grant Users:(RX)

7 等待几分钟

二、创建软链接

以管理员身份在命令行运行下面命令

mklink /d E:\\XinferenceFiles\\cache\\custom-glm4-chat-pytorch-9b E:\\glm_4_9b_chat

启动成功:

C:\Windows\System32>mklink /d E:\\XinferenceFiles\\cache\\custom-glm4-chat-pytorch-9b E:\\glm_4_9b_chat

为 E:\\XinferenceFiles\\cache\\custom-glm4-chat-pytorch-9b <<===>> E:\\glm_4_9b_chat 创建的三、命令方式启动模型

1 在E:\glm_4_9b_chat下创建一个custom-glm4-chat.json配置文件

内容为:

{

"version": 1,

"context_length": 131072,

"model_name": "custom-glm4-chat",

"model_lang": [

"en",

"zh"

],

"model_ability": [

"chat",

"tools"

],

"model_family": "glm4-chat",

"model_specs": [

{

"model_format": "pytorch",

"model_size_in_billions": 9,

"quantizations": [

"4-bit",

"8-bit",

"none"

],

"model_id": "THUDM/glm-4-9b-chat",

"model_uri": "E:\\glm_4_9b_chat"

}

]

}

2 启动xinference,执行下面命令

xinference-local --host 127.0.0.0 --port 9997

3 打开inference的命令行,切换到大模型路径下E:\glm_4_9b_chat

4 注册模型

xinference register --model-type LLM --file custom-glm4-chat.json --persist

5 开启模型

xinference launch --model-name custom-glm4-chat --model-format pytorch --model-engine Transformers

参考链接:

【Gradio-Windows-Linux】解决share=True无法创建共享链接,缺少frpc_windows_amd64_v0.2_gradio share=true-CSDN博客

无错误!xinference部署本地模型glm4-9b-chat、bge-large-zh-v1.5_xinference加载本地模型-CSDN博客

使用xinference下载大模型之后存储的位置

:"E:\XinferenceFiles\modelscope\hub\ZhipuAI\glm-4-9b-chat\modeling_chatglm.py"

相关推荐
兴趣使然黄小黄5 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
深圳佛手9 小时前
AI 编程工具Claude Code 介绍
人工智能·python·机器学习·langchain
cooldream200914 小时前
构建智能知识库问答助手:LangChain与大语言模型的深度融合实践
人工智能·语言模型·langchain·rag
“负拾捌”14 小时前
LangChain提示词模版 PromptTemplate
python·langchain·prompt
zhangbaolin15 小时前
langchain agent的中间件
中间件·langchain·大模型·agent
工藤学编程16 小时前
零基础学AI大模型之LangChain Embedding框架全解析
人工智能·langchain·embedding
赋范大模型技术社区20 小时前
LangChain 1.0 实战: NL2SQL 数据分析 Agent
数据分析·langchain·实战·agent·教程·nl2sql·langchain1.0
Sirius Wu1 天前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
boonya1 天前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
大模型真好玩2 天前
LangChain1.0速通指南(三)——LangChain1.0 create_agent api 高阶功能
人工智能·langchain·mcp