offer 报表数据分析示例

数据信息:

Unnamed: 0 offerid sourceName affiliateId clickCount installs

0 0 21059 Clickorbits 10110006 705895 3785

1 1 1818 Mobavenue 10110080 9209 3124

2 2 1817 Mobavenue 10110080 4021 1

3 3 16493 A-Scale.IO 10110006 4651015 695

4 4 21048 A-Flyfunads-C 10110006 0 1321

5 5 18297 XYads-ID 10110006 7451168 2954

6 6 18676 A-Adaction 10110014 16421 13071

7 7 12078 A-Advolt 10110080 3335 0

8 8 12382 A-NSG Media 10110080 3918 1

9 9 1625 Mobavenue 10110006 1954129 2775

10 10 20630 comemobile 10110006 0 0

11 11 20169 A-Collectcent 10110006 5452751 3426

12 12 18379 Mobavenue 10110080 30705 26637

13 13 20698 A-Mobisummer-C 10110006 28274 108

14 14 4702 A-Justdo 10110006 16053001 22456

15 15 6987 A-Advolt 10110006 5543597 4552

16 16 12072 D-Nira 10110080 31776 27680

17 17 2022 A-AppMontize 10110080 23475 20022

18 18 20038 A-Smartconnect 10110006 513361 62

19 19 1818 Mobavenue 10110006 8329336 1421

1、 查看offer 报表的最高clickCount,最低clickCount,平均值和中位数;

python 复制代码
data = pd.read_csv(filename)
data['clickCount'].max()
data['clickCount'].min()
data['clickCount'].mean()
data['clickCount'].median()

2、 查看offer 报表的最高clickCount和最低clickCount 的全部信息;

python 复制代码
data = pd.read_csv(filename)
data.sort_values('clickCount').head(1)           最小值
data.sort_values('clickCount').tail(1)           最大值
data[data['clickCount'] == data['clickCount'].max()]

3、 获取installs 最高的2个 sourceName;

python 复制代码
data = pd.read_csv(filename)
result = data.groupby('sourceName')['installs'].sum().sort_values(ascending=False).head(2)

4 、获取installs 最高的1个affiliateId 值;

python 复制代码
data = pd.read_csv(filename)
result = data.groupby('affiliateId')['installs'].sum().nlargest(1)

5 、按affiliateId 值分组,统计每个affiliateId下offerid的个数;

python 复制代码
data = pd.read_csv(filename)
result = data.groupby('affiliateId')['offerid'].count()

affiliateId

10110006 12

10110014 1

10110080 7

6、 查找 affiliateId=10110006 和clickCount< 150000,数据;

python 复制代码
data = pd.read_csv(filename)
result = data[(data['affiliateId'] == 10110006) & (data['clickCount'] < 150000)]



    Unnamed: 0  offerid      sourceName  affiliateId  clickCount  installs
4            4    21048   A-Flyfunads-C     10110006           0      1321
10          10    20630      comemobile     10110006           0         0
13          13    20698  A-Mobisummer-C     10110006       28274       108

7、 查找 affiliateId=10110006 和clickCount> 150000,数据, 并按照clickCount排序;

python 复制代码
data = pd.read_csv(filename)
result = data[(data['affiliateId'] == 10110006) & (data['clickCount'] > 150000)].sort_values('clickCount',ascending=False)




Unnamed: 0  offerid      sourceName  affiliateId  clickCount  installs
14          14     4702        A-Justdo     10110006    16053001     22456
19          19     1818       Mobavenue     10110006     8329336      1421
5            5    18297        XYads-ID     10110006     7451168      2954
15          15     6987        A-Advolt     10110006     5543597      4552
11          11    20169   A-Collectcent     10110006     5452751      3426
3            3    16493      A-Scale.IO     10110006     4651015       695
9            9     1625       Mobavenue     10110006     1954129      2775
0            0    21059     Clickorbits     10110006      705895      3785
18          18    20038  A-Smartconnect     10110006      513361        62
相关推荐
布说在见8 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Tianyanxiao9 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
FIT2CLOUD飞致云10 小时前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一
皓74111 小时前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
菜鸟的人工智能之路12 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
阡之尘埃18 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
布说在见20 小时前
层次与网络的视觉对话:树图与力引导布局的双剑合璧
信息可视化·数据挖掘·数据分析
全栈开发圈1 天前
新书速览|Spark SQL大数据分析快速上手
sql·数据分析·spark
spssau1 天前
多分类logistic回归分析案例教程
分类·数据挖掘·数据分析·回归·回归分析·logistic回归·spssau
我就说好玩1 天前
2020年美国总统大选数据分析与模型预测
大数据·python·数据挖掘·数据分析·pandas·sklearn