offer 报表数据分析示例

数据信息:

Unnamed: 0 offerid sourceName affiliateId clickCount installs

0 0 21059 Clickorbits 10110006 705895 3785

1 1 1818 Mobavenue 10110080 9209 3124

2 2 1817 Mobavenue 10110080 4021 1

3 3 16493 A-Scale.IO 10110006 4651015 695

4 4 21048 A-Flyfunads-C 10110006 0 1321

5 5 18297 XYads-ID 10110006 7451168 2954

6 6 18676 A-Adaction 10110014 16421 13071

7 7 12078 A-Advolt 10110080 3335 0

8 8 12382 A-NSG Media 10110080 3918 1

9 9 1625 Mobavenue 10110006 1954129 2775

10 10 20630 comemobile 10110006 0 0

11 11 20169 A-Collectcent 10110006 5452751 3426

12 12 18379 Mobavenue 10110080 30705 26637

13 13 20698 A-Mobisummer-C 10110006 28274 108

14 14 4702 A-Justdo 10110006 16053001 22456

15 15 6987 A-Advolt 10110006 5543597 4552

16 16 12072 D-Nira 10110080 31776 27680

17 17 2022 A-AppMontize 10110080 23475 20022

18 18 20038 A-Smartconnect 10110006 513361 62

19 19 1818 Mobavenue 10110006 8329336 1421

1、 查看offer 报表的最高clickCount,最低clickCount,平均值和中位数;

python 复制代码
data = pd.read_csv(filename)
data['clickCount'].max()
data['clickCount'].min()
data['clickCount'].mean()
data['clickCount'].median()

2、 查看offer 报表的最高clickCount和最低clickCount 的全部信息;

python 复制代码
data = pd.read_csv(filename)
data.sort_values('clickCount').head(1)           最小值
data.sort_values('clickCount').tail(1)           最大值
data[data['clickCount'] == data['clickCount'].max()]

3、 获取installs 最高的2个 sourceName;

python 复制代码
data = pd.read_csv(filename)
result = data.groupby('sourceName')['installs'].sum().sort_values(ascending=False).head(2)

4 、获取installs 最高的1个affiliateId 值;

python 复制代码
data = pd.read_csv(filename)
result = data.groupby('affiliateId')['installs'].sum().nlargest(1)

5 、按affiliateId 值分组,统计每个affiliateId下offerid的个数;

python 复制代码
data = pd.read_csv(filename)
result = data.groupby('affiliateId')['offerid'].count()

affiliateId

10110006 12

10110014 1

10110080 7

6、 查找 affiliateId=10110006 和clickCount< 150000,数据;

python 复制代码
data = pd.read_csv(filename)
result = data[(data['affiliateId'] == 10110006) & (data['clickCount'] < 150000)]



    Unnamed: 0  offerid      sourceName  affiliateId  clickCount  installs
4            4    21048   A-Flyfunads-C     10110006           0      1321
10          10    20630      comemobile     10110006           0         0
13          13    20698  A-Mobisummer-C     10110006       28274       108

7、 查找 affiliateId=10110006 和clickCount> 150000,数据, 并按照clickCount排序;

python 复制代码
data = pd.read_csv(filename)
result = data[(data['affiliateId'] == 10110006) & (data['clickCount'] > 150000)].sort_values('clickCount',ascending=False)




Unnamed: 0  offerid      sourceName  affiliateId  clickCount  installs
14          14     4702        A-Justdo     10110006    16053001     22456
19          19     1818       Mobavenue     10110006     8329336      1421
5            5    18297        XYads-ID     10110006     7451168      2954
15          15     6987        A-Advolt     10110006     5543597      4552
11          11    20169   A-Collectcent     10110006     5452751      3426
3            3    16493      A-Scale.IO     10110006     4651015       695
9            9     1625       Mobavenue     10110006     1954129      2775
0            0    21059     Clickorbits     10110006      705895      3785
18          18    20038  A-Smartconnect     10110006      513361        62
相关推荐
地球资源数据云1 天前
从 DEM 到 3D 渲染:R 语言 rayshader 地形可视化全指南
3d·数据分析·r语言
BYSJMG1 天前
Python毕业设计选题推荐:基于大数据的美食数据分析与可视化系统实战
大数据·vue.js·后端·python·数据分析·课程设计·美食
YangYang9YangYan1 天前
2026高职大数据专业数据分析学习必要性
大数据·学习·数据分析
地球资源数据云1 天前
R语言网络分析与路径规划——线数据应用实战:规划散步路线
数据分析·r语言
YangYang9YangYan1 天前
2026大专大数据技术专业学习数据分析的必要性
大数据·学习·数据分析
-To be number.wan2 天前
Python数据分析:Matplotlib 绘图练习
python·数据分析·matplotlib
BYSJMG2 天前
计算机毕设选题推荐:基于大数据的癌症数据分析与可视化系统
大数据·vue.js·python·数据挖掘·数据分析·课程设计
YIN_尹2 天前
【MySQL】数据分析双剑客:聚合函数 与 group by子句的完美搭配
mysql·性能优化·数据分析
TM1Club3 天前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
追风少年ii3 天前
多组学扩展---分子对接pyrosetta
python·数据分析·空间·单细胞