MAE 论文精读 | 在CV领域自监督的Bert思想

1. 背景

之前我们了解了VIT和transformer

MAE 是基于VIT的,不过像BERT探索了自监督学习在NLP领域的transformer架构的应用,MAE探索了自监督学习在CV的transformer的应用

论文标题中的Auto就是说标号来自于图片本身,暗示了这种无监督的学习

2.方法

像是Bert一样,通过mask形成带掩码的语言模型,挖掉东西,然后让模型来估计

随机盖住一些块patch,然后预测出盖住的patch,预测这个patch里的所有像素

遮住更大的块的话可以让模型学习一些更好的表征

要注意这些模型的基本都很大

2.1 基本流程

(1)首先输入图像随机打成一个一个的块patch,随机遮住其中一些

(2)然后将未遮住的块送入Encoder编码器进行编码 形成特征,这里注意我们的编码器只需要处理未遮住的块,所以计算量要比全部处理更小

(3)和原来遮住的块叠加拼接 再送入decoder解码器恢复被遮住的块

实际使用中,只需要用编码器即可(不需要做掩码)编码器提取特征用于计算机视觉的下游任务

由于编码很重要,所以主要的计算量还是来自编码器

2.2 与VIT比较

(1)盖住更多的块,使得块与块之间的冗余没有那么高

(2)用一个transformer架构的解码器,直接还原原始像素信息,使得整个流程更加简单

(3)加上一些技术,如正则项技术,也可以在小一点的数据集上训练出来,使得训练更加鲁棒

3.实验

映射的维度

微调可以调整个全部的网络,也可以调最后一层,或者调网络中的部分层,微调哪些层

尝试不同遮住率

相关推荐
蹦蹦跳跳真可爱5892 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
蚂蚁20144 小时前
卷积神经网络(二)
人工智能·计算机视觉
z_mazin6 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
lixy5796 小时前
深度学习3.7 softmax回归的简洁实现
人工智能·深度学习·回归
youhebuke2257 小时前
利用deepseek快速生成甘特图
人工智能·甘特图·deepseek
訾博ZiBo7 小时前
AI日报 - 2025年04月26日
人工智能
郭不耐7 小时前
DeepSeek智能时空数据分析(三):专业级地理数据可视化赏析-《杭州市国土空间总体规划(2021-2035年)》
人工智能·信息可视化·数据分析·毕业设计·数据可视化·城市规划
AI军哥7 小时前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
余弦的倒数7 小时前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright7 小时前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归