深度学习(八)---zed调用yolov5之目标检测遇到的问题及解决

1.前言

zed调用yolov5进行目标检测时遇到的问题,记录下~~

2.环境信息
复制代码
开发板:Jetson Xviewer NX
摄像头: zed2

系统:Ubuntu18.04
3.问题及解决

问题1:

RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR

原因: cuda 没有正确调用,导致运行报错
解决: 重新正确引用cuda

复制代码
import torch

# 检查CUDA是否可用,并设置默认设备为CUDA
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

# 将模型移动到CUDA设备
model = YourModel().to(device)

# 将输入数据移动到CUDA设备
input_data = input_data.to(device)

# 在CUDA设备上执行模型推理
with torch.no_grad():
    output = model(input_data)

小记:这里还用到了残差网络模块,但作者对此不是很熟悉,暂不讲解

问题2:

AttributeError: Can't get attribute 'C3' on <module 'models.common' from '/home/bdlf/yolov5-Project/models/common.py'>

原因: 训练的权重pt文件和预测的新环境的YOLOv5的版本不相同,导致无法使用
解决: 直接找到你训练模型的YOLOV5代码,把models文件夹和utils文件夹替换掉即可

问题3:

在cv2.rectangle(im0, c1, c2, color, thickness=2, lineType=cv2.LINE_AA),处报错: TypeError: Argument given by name ('thickness') and position (4)

原因: rectangle函数被处理的图片im0格式不正确,最好是原始图像
解决: 更改为原始图像进行处理,或者引用im.copy()

问题4:

在用flask框架封装目标检测算法时,出现视频卡顿情况

解决: 这个问题可能是多方面原因,可以从以下一一排除:第一,cuda是否引用正确,cuda是否得到充分利用? 第二,视觉目标检测算法中会导入一些库,可以提高进程效率的函数一定要提前引入;第三,代码逻辑中是否存在一些影响加载速度的代码程序,优化代码

本文只是自己的一些理解,后续会持续更新,欢迎读者们积极反馈~

相关推荐
Gain_chance11 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
Ziky学习记录12 小时前
从零到实战:React Router 学习与总结
前端·学习·react.js
sensen_kiss13 小时前
INT303 Coursework1 爬取影视网站数据(如何爬虫网站数据)
爬虫·python·学习
red_redemption13 小时前
自由学习记录(116)
学习
r i c k15 小时前
数据库系统学习笔记
数据库·笔记·学习
野犬寒鸦15 小时前
从零起步学习JVM || 第一章:类加载器与双亲委派机制模型详解
java·jvm·数据库·后端·学习
FL162386312915 小时前
无人机视角农田焚烧秸秆检测数据集VOC+YOLO格式3245张2类别
yolo
浅念-16 小时前
C语言编译与链接全流程:从源码到可执行程序的幕后之旅
c语言·开发语言·数据结构·经验分享·笔记·学习·算法
ZH154558913116 小时前
Flutter for OpenHarmony Python学习助手实战:API接口开发的实现
python·学习·flutter
爱吃生蚝的于勒16 小时前
【Linux】进程信号之捕捉(三)
linux·运维·服务器·c语言·数据结构·c++·学习