分布式之CAP理论与BASE理论

CAP理论

CAP:一致性(consistency)、可用性(Availability)、分区容错(partition-tolerance)。CAP定律说的是在一个分布式计算机系统中,一致性,可用性和分区容错性这三种保证无法同时得到满足,最多满足两个。

C:强一致性

系统在执行过某项操作后仍然处于一致的状态。在分布式系统中,更新操作执行成功后所有的用户都应该读到最新的值,这样的系统被认为是具有强一致性的。 等同于所有节点访问同一份最新的数据副本;

A:可用性

每一个操作总是能够在一定的时间内返回结果,这里需要注意的是"一定时间内"和"返回结果"。一定时间指的是,在可以容忍的范围内返回结果,结果可以是成功或者失败。 对数据更新具备高可用性;

P:分区容错性

理解为在存在网络分区的情况下,仍然可以接受请求(满足一致性和可用性)。这里的网络分区是指由于某种原因,网络被分成若干个孤立的区域,而区域之间互不相通。还有一些人将分区容错性理解为系统对节点动态加入和离开的能力,因为节点的加入和离开可以认为是集群内部的网络分区。

Partition Tolerance的意思是,在网络中断,消息丢失的情况下,系统照样能够工作。 以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择.

一致性(C)与可用性(A)的决择:

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定 会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用 性之间进行权衡。

常见的CP和AP系统:

  • CP: Zookeeper
  • AP: Eureka

BASE理论

BASE理论是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。

BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大型互联网分布式实践的总结,是基于CAP定理逐步演化而来的。

其核心思想是:既是无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。

相关推荐
黄俊懿17 小时前
【架构师从入门到进阶】第一章:架构设计基础——第二节:架构设计原则
分布式·后端·中间件·架构
没有bug.的程序员18 小时前
分布式配置深潜:Spring Cloud Config 与 Git 集成内核、版本回滚机制与多环境治理实战指南
java·分布式·git·spring cloud·分布式配置·版本回滚
草履虫建模19 小时前
Java面试应对思路和题库
java·jvm·spring boot·分布式·spring cloud·面试·mybatis
Re.不晚20 小时前
Redis——分布式锁
数据库·redis·分布式
Coder_Boy_21 小时前
从单体并发工具类到分布式并发:思想演进与最佳实践(二)
java·spring boot·分布式·微服务·设计模式
weed00021 小时前
LLM Xinference 安装使用(支持CPU、Metal、CUDA推理和分布式部署)
分布式
PD我是你的真爱粉21 小时前
RabbitMQ架构实战2️⃣:分布式事务下的跨服务数据同步
分布式·架构·rabbitmq
雨言yyds2 天前
Kafka
分布式·kafka
学到头秃的suhian2 天前
Redis分布式锁
java·数据库·redis·分布式·缓存
若水不如远方2 天前
分布式一致性原理(四):工程化共识 —— Raft 算法
分布式·后端·算法