clickhouse ssb-dbgen数据构造 及 clickhouse-benchmark简单压测

一、 测试数据构造

1. 数据样例

官方文档有给出一批数据样例。优点是比较真实,缺点是太大了,动辄上百G不适合简单小测试

相对来说 ssb-dbgen工具 生成的表比较简单,数据量也可以自己控制,更加方便。

2. ssb-dbgen下载安装

  • 下载

https://github.com/vadimtk/ssb-dbgen

  • 安装依赖包
bash 复制代码
yum -y install gcc gcc-c++ make cmake
  • ssb-dbgen安装:解压,进入目录,执行 make 即可

3. ssb-dbgen生成测试数据

ssb-dbgen工具指定参数可以生成如下表的数据,其中lineorder是最大的

  • c--customer.tbl
  • d--date.tbl
  • p--part.tbl
  • s--supplier.tbl
  • l--lineorder.tbl
  • a-all
bash 复制代码
./dbgen -s 10 -T a

-s 100 lineorder表会生成6亿行数据(约67G),-s 1000则会为其生成60亿行数据(约670G),需要大量空间和时间,注意控制。

4. 创建表结构

测试表可以都用,也可以挑一些,官方文档只建了4个

sql 复制代码
CREATE TABLE customer
(
        C_CUSTKEY       UInt32,
        C_NAME          String,
        C_ADDRESS       String,
        C_CITY          LowCardinality(String),
        C_NATION        LowCardinality(String),
        C_REGION        LowCardinality(String),
        C_PHONE         String,
        C_MKTSEGMENT    LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);

CREATE TABLE lineorder
(
    LO_ORDERKEY             UInt32,
    LO_LINENUMBER           UInt8,
    LO_CUSTKEY              UInt32,
    LO_PARTKEY              UInt32,
    LO_SUPPKEY              UInt32,
    LO_ORDERDATE            Date,
    LO_ORDERPRIORITY        LowCardinality(String),
    LO_SHIPPRIORITY         UInt8,
    LO_QUANTITY             UInt8,
    LO_EXTENDEDPRICE        UInt32,
    LO_ORDTOTALPRICE        UInt32,
    LO_DISCOUNT             UInt8,
    LO_REVENUE              UInt32,
    LO_SUPPLYCOST           UInt32,
    LO_TAX                  UInt8,
    LO_COMMITDATE           Date,
    LO_SHIPMODE             LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);

CREATE TABLE part
(
        P_PARTKEY       UInt32,
        P_NAME          String,
        P_MFGR          LowCardinality(String),
        P_CATEGORY      LowCardinality(String),
        P_BRAND         LowCardinality(String),
        P_COLOR         LowCardinality(String),
        P_TYPE          LowCardinality(String),
        P_SIZE          UInt8,
        P_CONTAINER     LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;

CREATE TABLE supplier
(
        S_SUPPKEY       UInt32,
        S_NAME          String,
        S_ADDRESS       String,
        S_CITY          LowCardinality(String),
        S_NATION        LowCardinality(String),
        S_REGION        LowCardinality(String),
        S_PHONE         String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;

将star schema转换为flat schema(表关联转为大宽表):

sql 复制代码
SET max_memory_usage = 20000000000;

CREATE TABLE lineorder_flat
ENGINE = MergeTree ORDER BY (LO_ORDERDATE, LO_ORDERKEY)
AS SELECT
    l.LO_ORDERKEY AS LO_ORDERKEY,
    l.LO_LINENUMBER AS LO_LINENUMBER,
    l.LO_CUSTKEY AS LO_CUSTKEY,
    l.LO_PARTKEY AS LO_PARTKEY,
    l.LO_SUPPKEY AS LO_SUPPKEY,
    l.LO_ORDERDATE AS LO_ORDERDATE,
    l.LO_ORDERPRIORITY AS LO_ORDERPRIORITY,
    l.LO_SHIPPRIORITY AS LO_SHIPPRIORITY,
    l.LO_QUANTITY AS LO_QUANTITY,
    l.LO_EXTENDEDPRICE AS LO_EXTENDEDPRICE,
    l.LO_ORDTOTALPRICE AS LO_ORDTOTALPRICE,
    l.LO_DISCOUNT AS LO_DISCOUNT,
    l.LO_REVENUE AS LO_REVENUE,
    l.LO_SUPPLYCOST AS LO_SUPPLYCOST,
    l.LO_TAX AS LO_TAX,
    l.LO_COMMITDATE AS LO_COMMITDATE,
    l.LO_SHIPMODE AS LO_SHIPMODE,
    c.C_NAME AS C_NAME,
    c.C_ADDRESS AS C_ADDRESS,
    c.C_CITY AS C_CITY,
    c.C_NATION AS C_NATION,
    c.C_REGION AS C_REGION,
    c.C_PHONE AS C_PHONE,
    c.C_MKTSEGMENT AS C_MKTSEGMENT,
    s.S_NAME AS S_NAME,
    s.S_ADDRESS AS S_ADDRESS,
    s.S_CITY AS S_CITY,
    s.S_NATION AS S_NATION,
    s.S_REGION AS S_REGION,
    s.S_PHONE AS S_PHONE,
    p.P_NAME AS P_NAME,
    p.P_MFGR AS P_MFGR,
    p.P_CATEGORY AS P_CATEGORY,
    p.P_BRAND AS P_BRAND,
    p.P_COLOR AS P_COLOR,
    p.P_TYPE AS P_TYPE,
    p.P_SIZE AS P_SIZE,
    p.P_CONTAINER AS P_CONTAINER
FROM lineorder AS l
INNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEY
INNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEY
INNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEY;

5. 导入数据

bash 复制代码
cd ssb-dbgen-master

clickhouse-client --password --query "INSERT INTO hydb.customer FORMAT CSV" < customer.tbl
clickhouse-client --password --query "INSERT INTO hydb.part FORMAT CSV" < part.tbl
clickhouse-client --password --query "INSERT INTO hydb.supplier FORMAT CSV" < supplier.tbl
clickhouse-client --password --query "INSERT INTO hydb.lineorder FORMAT CSV" < lineorder.tbl

如果还不够,也可以多次执行以下语句,至满意数据量

sql 复制代码
insert into hydb.lineorder select * from hydb.lineorder;

二、 clickhouse-benchmark简单压测

clickhouse-benchmark是自带的一个简单压测工具,可以控制执行SQL的次数、并发度等。

1. 常用参数

  • -c 并发度,例如10个并发同时执行指定SQL
  • -d 间隔几秒执行SQL,默认为1,0表示禁用
  • -h 指定连接的db ip,可以同时指定多个-h 连接多个库进行对比
  • -i SQL执行总次数
  • -r 有多个SQL时,以随机顺序执行
  • -t 指定压测时间,到达指定时间后停止发送压测SQL。默认为0,表示无限制

2. 两种用法

  • 直接执行,适合简单SQL
bash 复制代码
echo "SELECT toYear(LO_ORDERDATE),count(*) FROM hydb.lineorder group by toYear(LO_ORDERDATE) order by 2 desc" | clickhouse-benchmark --password='xxxx' -i 10
  • 执行SQL文件,适合复杂、批量语句
bash 复制代码
vi queries_file

#查询语句
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM hydb.lineorder WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;

执行压测

bash 复制代码
clickhouse-benchmark --password='xxxx' -i 10 < queries_file

压测的语句可以简单写点,也可以参考:Star Schema Benchmark | ClickHouse Docs

3. 结果分析

Queries executed: 10.

localhost:9000, queries 10, QPS: 6.772, RPS: 67904487.440, MiB/s: 518.070, result RPS: 67721584.984, result MiB/s: 516.675.

0.000% 0.145 sec.

10.000% 0.146 sec.

20.000% 0.146 sec.

30.000% 0.146 sec.

40.000% 0.147 sec.

50.000% 0.148 sec.

60.000% 0.148 sec.

70.000% 0.148 sec.

80.000% 0.149 sec.

90.000% 0.150 sec.

95.000% 0.150 sec.

99.000% 0.150 sec.

99.900% 0.150 sec.

99.990% 0.150 sec.

在结果报告中,您可以找到:

  • 查询数量:参见Queries executed:字段。

  • 状态码(按顺序给出):

    • ClickHouse服务器的连接信息。
    • 已处理的查询数。
    • QPS:服务端每秒处理的查询数量
    • RPS:服务器每秒读取多少行
    • MiB/s:服务器每秒读取多少字节的数据
    • 结果RPS:服务端每秒生成多少行的结果集数据
    • 结果MiB/s.服务端每秒生成多少字节的结果集数据
  • 查询执行时间的百分比。

参考

https://github.com/vadimtk/ssb-dbgen

Star Schema Benchmark | ClickHouse Docs

性能测试 | ClickHouse Docs

使用 ssb-dbgen 对 ClickHouse 压测_数据库人生的博客-CSDN博客

相关推荐
Jiutwo2 天前
ClickHouse 入门
数据库·clickhouse
neeef_se5 天前
clickhouse-介绍、安装、数据类型、sql
数据库·sql·clickhouse
昊昊该干饭了8 天前
数仓建模(五)选择数仓技术栈:Hive & ClickHouse & 其它
hive·hadoop·clickhouse
大饼酥9 天前
ClickHouse大数据准实时更新
clickhouse
柚几哥哥9 天前
从 MySQL 到 ClickHouse 的迁移与优化——支持上亿级数据量的复杂检索
数据库·mysql·clickhouse
程序员老石9 天前
ClickHouse-CPU、内存参数设置
android·java·clickhouse
程序员老石11 天前
Clickhouse基础(一)
java·开发语言·clickhouse
柚几哥哥12 天前
SpringBoot多数据源架构实现
spring boot·后端·clickhouse·架构·数据库架构
金州饿霸12 天前
ClickHouse vs StarRocks 选型对比
clickhouse
King.62412 天前
SQLynx 数据库管理平台 3.6.0 全新发布:全面支持华为数据库和ClickHouse,代码提示更智能!
大数据·数据库·人工智能·sql·mysql·clickhouse·华为