ClickHouse 使用

CREATE DATABASE test on cluster ck_00_1repl;

DROP TABLE local_t_ordt_order on cluster ck_00_1repl;

创建本地 local 表

CREATE TABLE test.local_order_db_t_order on cluster ck_00_1repl

(
forder_id_hash String,
forder_id String,
fuid Int32,
forder_type Int32,
fsale_type Int32,
frepay_type Int32,
forder_info String,
ftotal_amount Int64,
ftotal_handling_fee Int32,
ftotal_mon_pay Int32,
fextra_capital Int32,
ftotal_manage_fee Int64,
fversion Int32,
fpay_way Int32,
fpay_suc_time DateTime,
fetl_time DateTime,
forder_state Date,
f_p_date Date

)

ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/{database}/{table}', '{replica}')

PARTITION BY f_p_date

PRIMARY KEY (forder_type, fsale_type, forder_state)

ORDER BY (forder_type, fsale_type, forder_state, forder_id)

TTL f_p_date+ toIntervalDay(7)

SETTINGS index_granularity = 8192;

创建分布式 distributed 表

CREATE TABLE test.t_order_db_t_order on cluster ck_00_1repl

(
forder_id_hash String,
forder_id String,
fuid Int32,
forder_type Int32,
fsale_type Int32,
frepay_type Int32,
forder_info String,
ftotal_amount Int64,
ftotal_handling_fee Int32,
ftotal_mon_pay Int32,
fextra_capital Int32,
ftotal_manage_fee Int64,
fversion Int32,
fpay_way Int32,
fpay_suc_time DateTime,
fetl_time DateTime,
forder_state Date,
f_p_date Date

)

ENGINE = Distributed('ck_00_1repl', 'test', 'local_order_db_t_order', rand());

SHOW DATABASES;

SHOW TABLES;

INSERT INTO test.local_order_db_t_order(forder_id) VALUES ('1_10.9.104.249');

INSERT INTO test.local_order_db_t_order(forder_id) VALUES ('2_10.9.104.250');

select * from test.local_order_db_t_order;

select count(1) from test.local_order_db_t_order;

select * from test.t_order_db_t_order;

select count(1) from test.t_order_db_t_order;

数据量记录

1、实时数据仓库

4百亿+
4十亿+

2、日志


5.5万亿+
2.9千亿+

相关推荐
Goona_8 小时前
拒绝SQL恐惧:用Python+pyqt打造任意Excel数据库查询系统
数据库·python·sql·excel·pyqt
rufeii11 小时前
[极客大挑战 2019]FinalSQL--布尔盲注
sql
爱吃萝卜的猪15 小时前
Clickhouse源码分析-副本数据同步
clickhouse·源码解析·副本同步
努力做一名技术15 小时前
从 Elastic 到 ClickHouse:日志系统性能与成本优化之路
clickhouse
白眼黑刺猬15 小时前
ClickHouse 高性能实时分析数据库-物化视图篇
clickhouse
Fireworkitte15 小时前
ClickHouse 常用的使用场景
clickhouse
技术卷16 小时前
详解力扣高频SQL50题之1084. 销售分析 III【简单】
sql·leetcode·oracle
NPE~18 小时前
基于MySQL实现基础图数据库
数据库·sql·mysql·教程·图数据库·图结构
技术卷18 小时前
详解力扣高频SQL50题之550. 游戏玩法分析 IV【中等】
sql·mysql·leetcode·oracle
样子201819 小时前
Sql注入 之sqlmap使用教程
数据库·sql