学习笔记:Pytorch利用MNIST数据集训练生成对抗网络(GAN)

2023.8.27

在进行深度学习的进阶的时候,我发了生成对抗网络是一个很神奇的东西,为什么它可以"将一堆随机噪声经过生成器变成一张图片",特此记录一下学习心得。

一、生成对抗网络百科

2014年,还在蒙特利尔读博士的Ian Goodfellow发表了论 文《Generative Adversarial Networks》(网址: https://arxiv.org/abs/1406.2661),将生成对抗网络引入 深度学习领域。2016年,GAN热潮席卷AI领域顶级会议, 从ICLR到NIPS,大量高质量论文被发表和探讨。Yann LeCun曾评价GAN是"20年来机器学习领域最酷的想法"。

机器学习的模型可大体分为两类,生成模型( Generative Model)和判别模型(Discriminative Model)。判别模型需要输入变量 ,通过某种模型来 预测 。生成模型是给定某种隐含信息,来随机产生观 测数据。

GAN百科:

GAN(生成对抗网络)的系统全面介绍(醍醐灌顶)_打灰人的博客-CSDN博客

二、GAN代码

训练代码:

epoch=1000时的效果就不错啦

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt


class Generator(nn.Module):  # 生成器
    def __init__(self, latent_dim):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(latent_dim, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 1024),
            nn.LeakyReLU(0.2),
            nn.Linear(1024, 784),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), 1, 28, 28)
        return img


class Discriminator(nn.Module):  # 判别器
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(784, 512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, img):
        img = img.view(img.size(0), -1)
        validity = self.model(img)
        return validity


def gen_img_plot(model, test_input):
    pred = np.squeeze(model(test_input).detach().cpu().numpy())
    fig = plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow((pred[i] + 1) / 2)
        plt.axis('off')
    plt.show(block=False)
    plt.pause(3)  # 停留0.5s
    plt.close()


# 调用GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 超参数设置
lr = 0.0001
batch_size = 128
latent_dim = 100
epochs = 1000

# 数据集载入和数据变换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 训练数据
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=False)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# 测试数据 torch.randn()函数的作用是生成一组均值为0,方差为1(即标准正态分布)的随机数
# test_data = torch.randn(batch_size, latent_dim).to(device)
test_data = torch.FloatTensor(batch_size, latent_dim).to(device)

# 实例化生成器和判别器,并定义损失函数和优化器
generator = Generator(latent_dim).to(device)
discriminator = Discriminator().to(device)
adversarial_loss = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)

# 开始训练模型
for epoch in range(epochs):
    for i, (imgs, _) in enumerate(train_loader):
        batch_size = imgs.shape[0]
        real_imgs = imgs.to(device)

        # 训练判别器
        z = torch.FloatTensor(batch_size, latent_dim).to(device)
        z.data.normal_(0, 1)
        fake_imgs = generator(z)  # 生成器生成假的图片

        real_labels = torch.full((batch_size, 1), 1.0).to(device)
        fake_labels = torch.full((batch_size, 1), 0.0).to(device)

        real_loss = adversarial_loss(discriminator(real_imgs), real_labels)
        fake_loss = adversarial_loss(discriminator(fake_imgs.detach()), fake_labels)
        d_loss = (real_loss + fake_loss) / 2

        optimizer_D.zero_grad()
        d_loss.backward()
        optimizer_D.step()

        # 训练生成器
        z.data.normal_(0, 1)
        fake_imgs = generator(z)

        g_loss = adversarial_loss(discriminator(fake_imgs), real_labels)
        optimizer_G.zero_grad()
        g_loss.backward()
        optimizer_G.step()

        torch.save(generator.state_dict(), "Generator_mnist.pth")

    print(f"Epoch [{epoch}/{epochs}] Loss_D: {d_loss.item():.4f} Loss_G: {g_loss.item():.4f}")

# gen_img_plot(Generator, test_data)
gen_img_plot(generator, test_data)

测试代码:

python 复制代码
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
import random

device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')


class Generator(nn.Module):  # 生成器
    def __init__(self, latent_dim):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(latent_dim, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 1024),
            nn.LeakyReLU(0.2),
            nn.Linear(1024, 784),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), 1, 28, 28)
        return img


# test_data = torch.FloatTensor(128, 100).to(device)
test_data = torch.randn(128, 100).to(device)  # 随机噪声

model = Generator(100).to(device)
model.load_state_dict(torch.load('Generator_mnist.pth'))
model.eval()

pred = np.squeeze(model(test_data).detach().cpu().numpy())

for i in range(64):
    plt.subplot(8, 8, i + 1)
    plt.imshow((pred[i] + 1) / 2)
    plt.axis('off')
plt.savefig(fname='image.png', figsize=[5, 5])
plt.show()

三、结果

在超参数设置 epoch=1000,batch_size=128,lr=0.0001,latent_dim = 100 时,gan生成的权重测的结果如图所示

四,GAN的损失函数曲线

一开始训练时,我的gan的损失函数的曲线是类似这样的,就是知乎这文章里一样,生成器损失函数的曲线一直发散。首先,这个loss的曲线一看就是网络崩了,一般正常的情况,d_loss的值会一直下降然后收敛,而g_loss的曲线会先增大后减少,最后同样也会收敛。其次,网络拿到手以后先不要训练太多次,容易出现过拟合的情况。

生成对抗网络的损失函数图像如下合理吗? - 知乎

这是训练了10轮的生成器和鉴别器的损失函数值变化吧:

效果如图所示:

相关推荐
爱技术的小伙子1 分钟前
【ChatGPT】 让ChatGPT模拟客户服务对话与应答策略
人工智能·chatgpt
OptimaAI28 分钟前
【 LLM论文日更|检索增强:大型语言模型是强大的零样本检索器 】
人工智能·深度学习·语言模型·自然语言处理·nlp
谢眠33 分钟前
机器学习day4-朴素贝叶斯分类和决策树
人工智能·机器学习
HelpHelp同学37 分钟前
教育机构内部知识库:教学资源的集中管理与优化
人工智能·知识库软件·搭建知识库·知识管理工具
深度学习lover43 分钟前
<项目代码>YOLOv8 番茄识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·番茄识别
IT古董44 分钟前
【机器学习】机器学习中用到的高等数学知识-1.线性代数 (Linear Algebra)
人工智能·python·线性代数·机器学习
飞腾开发者1 小时前
飞腾平台Arm NN软件栈安装使用指南
linux·运维·人工智能·机器学习·计算机视觉
Watermelo6171 小时前
通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制
人工智能·深度学习·神经网络·mongodb·机器学习·自然语言处理·数据挖掘
AI算法-图哥2 小时前
pytorch量化训练
人工智能·pytorch·深度学习·文生图·模型压缩·量化
大山同学2 小时前
DPGO:异步和并行分布式位姿图优化 2020 RA-L best paper
人工智能·分布式·语言模型·去中心化·slam·感知定位