全网首发,人体姿态估计算法在OK3588上部署应用(十三)

一、主机模型转换

采用FastDeploy来部署应用深度学习模型到OK3588板卡上

进入主机Ubuntu的虚拟环境

conda activate ok3588

主机环境搭建可以参考上一篇 《OK3588板卡实现人像抠图(十二)》

生成onnx文件
python 复制代码
cd FastDeploy
# 下载Paddle静态图模型并解压
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz

# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
paddle2onnx --model_dir PP_TinyPose_256x192_infer \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
            --enable_dev_version True

# 固定shape
python -m paddle2onnx.optimize --input_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --output_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --input_shape_dict "{'image':[1,3,256,192]}"

转换成RKNN模型

python 复制代码
python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml \
                              --target_platform rk3588

把PP_TinyPose_256x192_infer文件夹打包放到OK3588板卡上

二、板卡模型部署

进入虚拟环境

conda activate ok3588

cd FastDeploy/examples/vision/keypointdetection/tiny_pose/rknpu2/cpp

mkdir build

cd build

cmake .. -DFASTDEPLOY_INSTALL_DIR=/home/forlinx/FastDeploy/build/fastdeploy-0.0.0/

make -j

得到了编译后的文件 infer_tinypose_demo

三、执行推理

PP_TinyPose_256x192_infer 文件夹放在build里面

NPU推理

sudo ./infer_tinypose_demo PP_TinyPose_256x192_infer pose.jpg

推理结果展示,即便是个钢铁侠模型,还是可以准确的识别出关键点哈

相关推荐
FL162386312920 分钟前
古籍影文公开古籍OCR检测数据集VOC格式共计8个文件
人工智能·ocr
递归不收敛3 小时前
专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
人工智能·笔记·git·python·学习·pycharm
qq_271581794 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
电鱼智能的电小鱼4 小时前
基于电鱼 ARM 工控机的井下AI故障诊断方案——让煤矿远程监控更智能、更精准
网络·arm开发·人工智能·算法·边缘计算
拉姆哥的小屋4 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
蚁巡信息巡查系统5 小时前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
林恒smileZAZ5 小时前
移动端h5适配方案
人工智能·python·tensorflow
伟贤AI之路5 小时前
开源!纯 HTML 实现支持 0.75~2× 变速、iOS 熄屏防中断的英语点读站
人工智能·ai编程
编码时空的诗意行者5 小时前
LM实现教程:基于 nanochat项目 从零开始理解大语言模型
人工智能·语言模型·自然语言处理
兔兔爱学习兔兔爱学习5 小时前
ASR+MT+LLM+TTS 一体化实时翻译字幕系统
人工智能·自然语言处理·机器翻译