全网首发,人体姿态估计算法在OK3588上部署应用(十三)

一、主机模型转换

采用FastDeploy来部署应用深度学习模型到OK3588板卡上

进入主机Ubuntu的虚拟环境

conda activate ok3588

主机环境搭建可以参考上一篇 《OK3588板卡实现人像抠图(十二)》

生成onnx文件
python 复制代码
cd FastDeploy
# 下载Paddle静态图模型并解压
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz

# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
paddle2onnx --model_dir PP_TinyPose_256x192_infer \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
            --enable_dev_version True

# 固定shape
python -m paddle2onnx.optimize --input_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --output_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --input_shape_dict "{'image':[1,3,256,192]}"

转换成RKNN模型

python 复制代码
python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml \
                              --target_platform rk3588

把PP_TinyPose_256x192_infer文件夹打包放到OK3588板卡上

二、板卡模型部署

进入虚拟环境

conda activate ok3588

cd FastDeploy/examples/vision/keypointdetection/tiny_pose/rknpu2/cpp

mkdir build

cd build

cmake .. -DFASTDEPLOY_INSTALL_DIR=/home/forlinx/FastDeploy/build/fastdeploy-0.0.0/

make -j

得到了编译后的文件 infer_tinypose_demo

三、执行推理

PP_TinyPose_256x192_infer 文件夹放在build里面

NPU推理

sudo ./infer_tinypose_demo PP_TinyPose_256x192_infer pose.jpg

推理结果展示,即便是个钢铁侠模型,还是可以准确的识别出关键点哈

相关推荐
茶栀(*´I`*)3 小时前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp
却道天凉_好个秋3 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
藦卡机器人3 小时前
国产机械臂做的比较好的品牌有哪些?
大数据·数据库·人工智能
迎仔3 小时前
06-AI开发进阶
人工智能
陈天伟教授3 小时前
人工智能应用- 语言处理:01.机器翻译:人类语言的特点
人工智能·自然语言处理·机器翻译
Codebee3 小时前
OoderAgent 相比主流Agent框架的五大核心独特优势
人工智能
home_4983 小时前
与gemini关于神的对话
人工智能·科幻·神学
代码改善世界3 小时前
CANN深度解构:中国AI系统软件的原创性突破与架构创新
大数据·人工智能·架构
Fairy要carry3 小时前
面试-Torch函数
人工智能
aiguangyuan4 小时前
基于BERT的中文命名实体识别实战解析
人工智能·python·nlp