全网首发,人体姿态估计算法在OK3588上部署应用(十三)

一、主机模型转换

采用FastDeploy来部署应用深度学习模型到OK3588板卡上

进入主机Ubuntu的虚拟环境

conda activate ok3588

主机环境搭建可以参考上一篇 《OK3588板卡实现人像抠图(十二)》

生成onnx文件
python 复制代码
cd FastDeploy
# 下载Paddle静态图模型并解压
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz

# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
paddle2onnx --model_dir PP_TinyPose_256x192_infer \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
            --enable_dev_version True

# 固定shape
python -m paddle2onnx.optimize --input_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --output_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --input_shape_dict "{'image':[1,3,256,192]}"

转换成RKNN模型

python 复制代码
python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml \
                              --target_platform rk3588

把PP_TinyPose_256x192_infer文件夹打包放到OK3588板卡上

二、板卡模型部署

进入虚拟环境

conda activate ok3588

cd FastDeploy/examples/vision/keypointdetection/tiny_pose/rknpu2/cpp

mkdir build

cd build

cmake .. -DFASTDEPLOY_INSTALL_DIR=/home/forlinx/FastDeploy/build/fastdeploy-0.0.0/

make -j

得到了编译后的文件 infer_tinypose_demo

三、执行推理

PP_TinyPose_256x192_infer 文件夹放在build里面

NPU推理

sudo ./infer_tinypose_demo PP_TinyPose_256x192_infer pose.jpg

推理结果展示,即便是个钢铁侠模型,还是可以准确的识别出关键点哈

相关推荐
cxr8281 分钟前
2026年AI智能体实战总结概要
人工智能·ai智能体·openclaw
Clarence Liu2 分钟前
用大白话讲解人工智能(11) 向量数据库:AI的“长期记忆“是如何实现的?
人工智能
AI英德西牛仔3 分钟前
豆包回答怎么导出
人工智能
2501_926978339 分钟前
近10年中国社会发展路径总体视角图--双层架构的出现
大数据·人工智能
啊阿狸不会拉杆11 分钟前
《计算机视觉:模型、学习和推理》第 6 章-视觉学习和推理
人工智能·学习·算法·机器学习·计算机视觉·生成模型·判别模型
Loo国昌11 分钟前
【AI应用开发实战】04_混合检索器:BM25+向量+可靠度融合实战
人工智能·后端·python·自然语言处理
得一录14 分钟前
AI Agent的主流设计模式之反射模式
人工智能·设计模式
IvanCodes17 分钟前
Gemini 3.1 Pro 正式发布:一次低调更新,还是谷歌的关键反击?
人工智能·大模型·llm
Y前进四25 分钟前
ICLR 2026 Oral论文阅读 (21篇 对齐、公平、安全、隐私及社会考量)
论文阅读·人工智能