基于学习的人工智能(3)机器学习基本框架

机器学习是利用恰当的算法,从数据中获取经验,对基于知识设计的初始模型进行改进,从而更有效地实现任务目标的方法。

基于知识的方法需要对机器行为的所有细节进行设计和编程,而机器学习则截然不同。它不直接规定机器如何执行任务,而只需明确任务目标,让机器通过自主学习获得实现目标的技能。

机器学习基本框架包括五个关键要素:目标、模型、算法、数据和知识。

一、目标:

首先要确定一个目标,机器才能知道学习的方向。典型学习目标包括使分类更精确、使预测更合理或使生成更真实等等。

这些目标需要表示为严格的数学形式,如分类错误、预测误差等,这些数学化后的目标通常称为"损失函数"。损失函数值越低,表明机器完成任务的能力越好

例如,在分类任务中,我们可以计算样本中错误分类的比例。显然,错误分类的比例越小越好,因此该比例可作为分类任务的损失函数。

同样,在房价预测任务中,我们可以衡量模型预测值与实际房价之间的差距,其绝对值越小,表示预测越准确,因此可作为预测任务的损失函数。

相关推荐
结局无敌1 小时前
深度探究cann仓库下的infra:AI计算的底层基础设施底座
人工智能
m0_466525291 小时前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
慢半拍iii1 小时前
从零搭建CNN:如何高效调用ops-nn算子库
人工智能·神经网络·ai·cnn·cann
晟诺数字人1 小时前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
蛋王派1 小时前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr
禁默1 小时前
基于CANN的ops-cv仓库-多模态场景理解与实践
人工智能·cann
禁默1 小时前
【硬核入门】无需板卡也能造 AI 算子?深度玩转 CANN ops-math 通用数学库
人工智能·aigc·cann
程序员清洒1 小时前
CANN模型剪枝:从敏感度感知到硬件稀疏加速的全链路压缩实战
算法·机器学习·剪枝
敏叔V5871 小时前
AI智能体的工具学习进阶:零样本API理解与调用
人工智能·学习
徐小夕@趣谈前端2 小时前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word