SCI论文创新思路

SCI论文创新思路

一、 创新的分类

1、算法创新

比如提出CNN、LSTM、GCN、Attention、GAN这些伟大的算法,图灵奖大佬或在路上的大佬

2、架构创新

提出Transformer这种新的架构

3、迁移创新

将NLP的Transformer应用到CV领域,打破了cv和nlp的壁垒

VIT

4、思想创新

预训练

5、方法创新

最多的还是基于Transformer,大多对注意力改进

6、组合创新

1、融合的方式:串行、并行

2、对模块进行微改,看起来具有创新性(可能没啥效果)

三四区=LSTM+Attention(变体,通道,概率稀疏注意力,金字塔注意力)+posion embedding

三四区=Transformer+Attention+cnn+pool+position embedding

组合创新,大有可为!!

二、组合创新的必要性

上限高低:上可顶刊顶会,下可三区四区EI

入场门槛:既可0论文入手,也可顶会下场

助人程度:上可任教读博,下可毕业无忧

三、组合创新的流程

一般的科研流程:

1、明确领域内存在的问题(广泛阅读基础,思考)

2、提出合适的算法去解决(明确每个算法的优点)
组合创新的流程:

1、提出一个组合模型(了解一些顶会顶刊的模型框架,以及具体的算法,并进行总结)

2、了解对应论文中的问题(明确论文的动机和贡献,动机是你的动机的一部分,贡献是你的贡献的一部分,模块来源于哪一篇论文,好好读)

四、组合创新举例

1、组合创新公式

组合创新=基准模型(Transformer、U-Net)+模块(Attention、GCN)

如果想发一区:

1)组合的方式:串行、并行、融合等

2)对模块进行微改,或是加入一些小trick,看起来具有创新性

2、生活中的例子

3、关于CV的例子

4、魔改的方法

组合创新=基准模型(Transformer、U-Net)+模块(Attention、GCN)

如果想发一区:

1)组合的方式:串行、并行、融合等

2)对模块进行微改,或是加入一些小trick,看起来具有创新性


相关推荐
和鲸社区44 分钟前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
THMAIL1 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
Gyoku Mint1 小时前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
ningmengjing_2 小时前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
THMAIL3 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
relis3 小时前
解密llama.cpp中的batch与ubatch:深度学习推理优化的内存艺术
深度学习·batch·llama
中國龍在廣州4 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
山烛4 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
THMAIL4 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
小关会打代码5 小时前
深度学习之第八课迁移学习(残差网络ResNet)
人工智能·深度学习·迁移学习