MAC M2芯片执行yolov8 + deepsort 实现目标跟踪

MAC M2芯片执行yolov8 + deepsort 实现目标跟踪

MAC M2 YoloX + bytetrack实现目标跟踪

实验结果 MAC mps显存太小了跑不动 还是得用服务器跑 需要实验室的服务器跑 因为网上花钱跑4天太贵了!!!

步骤过程尝试:

执行mot17 数据集 到coco格式

复制代码
python3 tools/convert_mot17_to_coco.py

执行mps发现显存不够用

选择autodl 上的服务器进行训练

安装conda install git

然后重新进行 pycocotools.进行

step 2 安装docker 环境

复制代码
sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    gnupg-agent \
    software-properties-common

添加官方秘钥

复制代码
$ curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/gpg | sudo apt-key add -

安装docker环境失败 也是可以运行的

不影响bytetrack训练

这个是使用best权重计算得到的

下面是使用pretrain自己生成的得到的

同时 可以比较其他的追踪器

使用sort跟踪【结果】:

训练自己上传自定义的跟踪视频

下载比较结果

10个轮次的结果不够分析 需要实验室的服务器进行深度训练

传统理解为,IoU大于50%的时候,认为是目标检测到了。

为了更细化区分网络的性能,COCO数据集的评价标准中,把IoU的值从50%到95%每隔5%进行了一次划分。

具体来说,0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 ,一共十个,每次测试的时候都是在IoU=这个数上测试的。

在这10组precision-recall对中,我们对这十个值 取平均(我理解为,10个PR曲线下得到的AP值,然后对这10个AP进行平均),得到了一个AP@[0.5:0.95]

有时固定IoU的阈值,比如50%或75%,也就是AP50和AP75,意味着IoU为50%或者75%时的AP值。

·为什么要在不同的IoU情况下求AP和AR?

方便模型进行惩罚差的结果,优化好的结果。

相关推荐
没有不重的名么19 小时前
DanceTrack数据集介绍
人工智能·计算机视觉·目标跟踪
算法打盹中21 小时前
计算机视觉:安防智能体的实现与应用基于YOLOv8的实时无人机检测与跟踪
图像处理·yolo·计算机视觉·目标跟踪·无人机·目标识别
jndingxin1 天前
算法面试(5)------NMS(非极大值抑制)原理 Soft-NMS、DIoU-NMS 是什么?
人工智能·算法·目标跟踪
神仙别闹2 天前
基于 Python 模式识别(纹理图片里的目标检测)
python·目标检测·目标跟踪
feifeigo12312 天前
星座SAR动目标检测(GMTI)
人工智能·算法·目标跟踪
云卓SKYDROID15 天前
无人机云台电压类型及测量方法
人工智能·目标跟踪·无人机·高科技·航线系统
Coovally AI模型快速验证16 天前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
人工智能·安全·yolo·目标跟踪·无人机
CV缝合救星19 天前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!
人工智能·深度学习·计算机视觉·目标跟踪·即插即用模块
Coovally AI模型快速验证21 天前
3D目标跟踪重磅突破!TrackAny3D实现「类别无关」统一建模,多项SOTA达成!
人工智能·yolo·机器学习·3d·目标跟踪·无人机·cocos2d
山烛22 天前
OpenCV 模板匹配
人工智能·python·opencv·计算机视觉·目标跟踪·模板匹配