MAC M2芯片执行yolov8 + deepsort 实现目标跟踪

MAC M2芯片执行yolov8 + deepsort 实现目标跟踪

MAC M2 YoloX + bytetrack实现目标跟踪

实验结果 MAC mps显存太小了跑不动 还是得用服务器跑 需要实验室的服务器跑 因为网上花钱跑4天太贵了!!!

步骤过程尝试:

执行mot17 数据集 到coco格式

复制代码
python3 tools/convert_mot17_to_coco.py

执行mps发现显存不够用

选择autodl 上的服务器进行训练

安装conda install git

然后重新进行 pycocotools.进行

step 2 安装docker 环境

复制代码
sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    gnupg-agent \
    software-properties-common

添加官方秘钥

复制代码
$ curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/gpg | sudo apt-key add -

安装docker环境失败 也是可以运行的

不影响bytetrack训练

这个是使用best权重计算得到的

下面是使用pretrain自己生成的得到的

同时 可以比较其他的追踪器

使用sort跟踪【结果】:

训练自己上传自定义的跟踪视频

下载比较结果

10个轮次的结果不够分析 需要实验室的服务器进行深度训练

传统理解为,IoU大于50%的时候,认为是目标检测到了。

为了更细化区分网络的性能,COCO数据集的评价标准中,把IoU的值从50%到95%每隔5%进行了一次划分。

具体来说,0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 ,一共十个,每次测试的时候都是在IoU=这个数上测试的。

在这10组precision-recall对中,我们对这十个值 取平均(我理解为,10个PR曲线下得到的AP值,然后对这10个AP进行平均),得到了一个AP@[0.5:0.95]

有时固定IoU的阈值,比如50%或75%,也就是AP50和AP75,意味着IoU为50%或者75%时的AP值。

·为什么要在不同的IoU情况下求AP和AR?

方便模型进行惩罚差的结果,优化好的结果。

相关推荐
TY-202519 分钟前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
知来者逆3 天前
VLMs开发——基于Qwen2.5-VL 实现视觉语言模型在目标检测中的层级结构与实现方法
目标检测·计算机视觉·目标跟踪·语言模型·多模态·vlms·qwen2.5-vl
cver1234 天前
人脸情绪检测数据集-9,400 张图片 智能客服系统 在线教育平台 心理健康监测 人机交互优化 市场研究与广告 安全监控系统
人工智能·安全·yolo·计算机视觉·目标跟踪·机器人·人机交互
元让_vincent5 天前
论文Review 激光动态物体剔除 Dynablox | RAL2023 ETH MIT出品!
人工智能·计算机视觉·目标跟踪·机器人·自动驾驶·点云·动态物体剔除
2501_924731475 天前
城市路口识别准确率↑31%!陌讯时空建模算法在交通拥堵识别中的突破
人工智能·算法·目标检测·计算机视觉·目标跟踪
TY-20255 天前
【CV 目标检测】①——目标检测概述
人工智能·目标检测·目标跟踪
程序猿小D6 天前
【完整源码+数据集+部署教程】植物生长阶段检测系统源码和数据集:改进yolo11-rmt
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·植物生长阶段检测系统
2501_924730617 天前
智慧城管复杂人流场景下识别准确率↑32%:陌讯多模态感知引擎实战解析
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·边缘计算
cver1238 天前
建筑物实例分割数据集-9,700 张图片 城市规划与发展 灾害评估与应急响应 房地产市场分析 智慧城市管理 地理信息系统(GIS) 环境影响评估
人工智能·安全·目标检测·机器学习·计算机视觉·目标跟踪·智慧城市
2501_924877358 天前
化工安防误报率↓82%!陌讯多模态融合算法实战解析
大数据·算法·目标跟踪·边缘计算