pytorch异常——RuntimeError:Given groups=1, weight of size..., expected of...

文章目录

省流

  • nn.Conv2d 需要的输入张量格式为 (batch_size, channels, height, width),但您的示例输入张量 x 是 (batch_size, height, width, channels)。因此,需要对输入张量进行转置。

  • 注意,TensorFlow使用"NHWC"(批次、高度、宽度、通道)格式,而PyTorch使用"NCHW"(批次、通道、高度、宽度)格式

异常报错

bash 复制代码
RuntimeError: Given groups=1, weight of size [16, 3, 2, 3], 
expected input[8, 65, 66, 3] to have 3 channels, 
but got 65 channels instead

异常截图

异常代码

python 复制代码
def down_shifted_conv2d(x , num_filters , filters_size = [2,3],stride = 1, **kwargs):
    batch_size,H,W,channels = x.shape

    padding = (0,0,
        int(((filters_size[1]) - 1) / 2 ) , int((int(filters_size[1]) - 1) / 2),
        int(filters_size[0]) - 1 , 0,
        0,0)
    x_paded = nn.functional.pad(x, padding)
    print(x_paded.shape)
    conv_layer = nn.Conv2d(in_channels=channels, out_channels=num_filters, 
                           kernel_size=filters_size,
                           stride=stride, **kwargs)
    
    return conv_layer(x_paded)
# Example usage
x = torch.randn(8, 64, 64, 3)  # Example input with batch size 8, height and width 64, and 3 channels
num_filters = 16
output = down_shifted_conv2d(x, num_filters)
print(output.shape)

原因解释

  • 在pytorch中,"nn.Conv2d"需要输入的张量格式为(batch_size,channels,height,width),原图输入的x的格式是(batch_size,height ,weight,channel)所以需要对tensor进行转置。

  • 矩阵交换维度的函数permute,按照编号,将新的顺序填好即可

python 复制代码
def down_shifted_conv2d(x , num_filters , filters_size = [2,3], stride = 1, **kwargs):
    batch_size, H, W, channels = x.shape
    
    # Transpose the input tensor to (batch_size, channels, height, width)
    x = x.permute(0, 3, 1, 2)
    
    # Padding
    padding = (int((filters_size[1] - 1) / 2), int((filters_size[1] - 1) / 2),
               filters_size[0] - 1, 0)
    
    x_paded = F.pad(x, padding)

修正代码

python 复制代码
def down_shifted_conv2d(x , num_filters , filters_size = [2,3],stride = 1, **kwargs):
    batch_size,H,W,channels = x.shape
    # 按照顺序对4个维度分别进行填充
    padding = (0,0,
        int(((filters_size[1]) - 1) / 2 ) , int((int(filters_size[1]) - 1) / 2),
        int(filters_size[0]) - 1 , 0,
        0,0)
    x_paded = nn.functional.pad(x, padding)
    x_paded = x_paded.permute(0,3,1,2)
    # 进行卷积
    conv_layer = nn.Conv2d(in_channels=channels, out_channels=num_filters, 
                           kernel_size=filters_size,
                           stride=stride, **kwargs)
    
    return conv_layer(x_paded)
# Example usage
x = torch.randn(8, 64, 64, 3)  
num_filters = 16
output = down_shifted_conv2d(x, num_filters)
print(output.shape)

执行结果

相关推荐
工程师老罗4 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
JarryStudy5 小时前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
Eloudy6 小时前
用 Python 直写 CUDA Kernel的技术,CuTile、TileLang、Triton 与 PyTorch 的深度融合实践
人工智能·pytorch
Rorsion8 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
骇城迷影9 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
mailangduoduo10 小时前
零基础教学连接远程服务器部署项目——VScode版本
服务器·pytorch·vscode·深度学习·ssh·gpu算力
多恩Stone11 小时前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
纤纡.1 天前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
子榆.1 天前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow