利用大模型反馈故障的解决方案

作者 观测云 数据智能部 产品方案架构师 范莹莹

背景

观测云有两个错误巡检脚本,RUM 错误巡检和 APM 错误巡检,代码均开源。

错误巡检的主要目的是发现新出现的错误消息(error stack),原有的巡检在上报了相应的事件报告后,只是定位了问题,并没有给出合适的解决方案。OpenAI 的出现,给了解决个性化 error stack 的一些洞察和解决方案。

本次最佳实践通过二次开发原有巡检,针对智能巡检的告警报告,实现自动化故障反馈,为用户提出合适的改进意见,一并在事件报告中体现,作为更加完备的巡检解决方案。

实现流程

1.安装观测云集成(ChatGpt 监控)[ID: guance_chatgpt_monitor] 脚本。完整流程可参考最佳实践文档《一行代码实现 OpenAI 可观测》

2.安装观测云 APM 新增错误或 RUM 新增错误巡检脚本。

本最佳实践以RUM 新增错误巡检为例。

3.对新增错误获取到的 error-stack 进行提取,与大模型进行问答。

在构建事件报告的 RUMEventStruct 类下新增一个大模型故障反馈模块,示例代码如下:

ini 复制代码
# 大模型故障反馈
def build_chatgpt_solution(self, js_new_error_messages, start_time, end_time):
    chatgpt_solution_section = event_detail.Section(name='大模型故障反馈', name_en='Solution Details', index=3)

    OPENAI_API_KEY = DFF.ENV('OPENAI_API_KEY')

    # 发送请求并获取回复
    url = 'https://us1-private-func.guance.com/api/v1/al/auln-...../simplified'
    headers = {
        'Content-Type': 'application/json',
        'Authorization': f'Bearer {OPENAI_API_KEY}'
    }

    for js_new_error in js_new_error_messages:
        js_new_error_message = js_new_error[0]
        error_stack = js_new_error_message['error_stack']
        print(f'error_stack:\n{error_stack}')

        datas = {
            "model": "gpt-3.5-turbo",
            "messages": [{'role':'user', 'content':f'如果错误:{error_stack},请问原因是什么?怎么解决?'}],
            "temperature": 0.5,
            "presence_penalty": 0,
            "stream": False,
        }

        response = requests.post(url=url, headers=headers, json=datas)

        md = event_detail.Markdown("")
        text_list = [
            f'**解决方案**:`{response.text}`']
        text_list_en = [
             f'**Solution**:`{response.text}`',
        ]
        md.set_text(*text_list)
        md.set_text(*text_list_en, lang='en')
        chatgpt_solution_section.add(md)

    return chatgpt_solution_section

4.url 处填写第一步中授权链接的 POST 简化形式(JSON)

5.巡检一小时跑一次,如果所连接应用触发了巡检逻辑,即可在观测云控制台 **监控 -> 智能巡检 模块看到生成的事件报告。**如下图所示:

总结

在原有的智能巡检事件报告中,给出的建议相对固定,不能全面地将所有可能涉及到的错误建议给出。结合利用大模型,可以针对性地对触发的告警错误给出建议,提高事件报告的可读性。

相关推荐
love530love1 小时前
Windows避坑部署CosyVoice多语言大语言模型
人工智能·windows·python·语言模型·自然语言处理·pycharm
985小水博一枚呀2 小时前
【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)技术方案与架构设计?
人工智能·学习·语言模型·架构·大模型
白熊1882 小时前
【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
人工智能·计算机视觉·开源·文生图·音视频
weixin_514548892 小时前
一种开源的高斯泼溅实现库——gsplat: An Open-Source Library for Gaussian Splatting
人工智能·计算机视觉·3d
四口鲸鱼爱吃盐3 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``3 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss3 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF3 小时前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技3 小时前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造
闭月之泪舞3 小时前
OpenCv高阶(八)——摄像头调用、摄像头OCR
人工智能·opencv·ocr