DataLoader的使用

示例代码:

python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

# batch_size=4 取test_data[0]到test_data[3] 返回 打包好的img0-3, 打包好的target0-3(shuffle=True随机抓取)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
    imgs, targets = data
    # print(imgs.shape)
    # print(targets)
    writer.add_images("test_data_drop_last", imgs, step)
    step = step+1

writer.close()
python 复制代码
# batch_size=4 取test_data[0]到test_data[3] 返回 打包好的img0-3, 打包好的target0-3(随机抓取)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)

设置drop_last=False 结果,最后一步不足64张任然进行了保留

设置drop_last=True后

最后一步不足64张进行了舍去,所以只有155步

相关推荐
java1234_小锋23 分钟前
PyTorch2 Python深度学习 - 数据集与数据加载
开发语言·python·深度学习·pytorch2
文火冰糖的硅基工坊2 小时前
[人工智能-大模型-118]:模型层 - RNN状态记忆是如何实现的?是通过带权重的神经元,还是通过张量?
人工智能·rnn·深度学习
哥布林学者3 小时前
吴恩达深度学习课程二: 改善深层神经网络 第一周:深度学习的实践(四)其他缓解过拟合的方法
深度学习·ai
二进制星辰3 小时前
从零理解LeNet:卷积神经网络的起点与启示
深度学习
CoovallyAIHub3 小时前
超越传统3D生成:OccScene实现感知与生成的跨任务共赢
深度学习·算法·计算机视觉
CoovallyAIHub4 小时前
华为世界模型来了!30分钟生成272㎡室内场景,虚拟人导航不迷路
深度学习·算法·计算机视觉
剑指~巅峰4 小时前
Rust智能指针的奇妙之旅:从踩坑到顿悟
开发语言·人工智能·深度学习·机器学习·rust
Y200309164 小时前
图像分割重点知识总结
人工智能·深度学习·计算机视觉
Sunhen_Qiletian4 小时前
高性能人工智能目标检测开山篇----YOLO v1算法详解(上篇)
人工智能·深度学习·yolo·目标检测·计算机视觉·目标跟踪
Blossom.1185 小时前
把AI“灌”进奶瓶:1KB决策树让婴儿温奶器自己学会「恒温+计时」
人工智能·python·深度学习·算法·决策树·机器学习·计算机视觉