DataLoader的使用

示例代码:

python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

# batch_size=4 取test_data[0]到test_data[3] 返回 打包好的img0-3, 打包好的target0-3(shuffle=True随机抓取)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
    imgs, targets = data
    # print(imgs.shape)
    # print(targets)
    writer.add_images("test_data_drop_last", imgs, step)
    step = step+1

writer.close()
python 复制代码
# batch_size=4 取test_data[0]到test_data[3] 返回 打包好的img0-3, 打包好的target0-3(随机抓取)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)

设置drop_last=False 结果,最后一步不足64张任然进行了保留

设置drop_last=True后

最后一步不足64张进行了舍去,所以只有155步

相关推荐
强哥之神17 分钟前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
陈敬雷-充电了么-CEO兼CTO2 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
旷世奇才李先生3 小时前
Pillow 安装使用教程
深度学习·microsoft·pillow
acstdm6 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl6 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~6 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
视觉语言导航8 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
羊小猪~~10 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
李师兄说大模型10 小时前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
锅挤10 小时前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络