DataLoader的使用

示例代码:

python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

# batch_size=4 取test_data[0]到test_data[3] 返回 打包好的img0-3, 打包好的target0-3(shuffle=True随机抓取)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
    imgs, targets = data
    # print(imgs.shape)
    # print(targets)
    writer.add_images("test_data_drop_last", imgs, step)
    step = step+1

writer.close()
python 复制代码
# batch_size=4 取test_data[0]到test_data[3] 返回 打包好的img0-3, 打包好的target0-3(随机抓取)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)

设置drop_last=False 结果,最后一步不足64张任然进行了保留

设置drop_last=True后

最后一步不足64张进行了舍去,所以只有155步

相关推荐
max5006006 小时前
实时多模态电力交易决策系统:设计与实现
图像处理·人工智能·深度学习·算法·音视频
尝试经历体验7 小时前
pycharm突然不能正常运行
python·深度学习·pycharm
大千AI助手8 小时前
灾难性遗忘:神经网络持续学习的核心挑战与解决方案
人工智能·深度学习·神经网络·大模型·llm·持续学习·灾难性遗忘
七元权8 小时前
论文阅读-SelectiveStereo
论文阅读·深度学习·双目深度估计·selectivestereo
F_D_Z8 小时前
【PyTorch】单对象分割
人工智能·pytorch·python·深度学习·机器学习
艾醒9 小时前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
人工智能·深度学习·算法
nju_spy9 小时前
南京大学 LLM开发基础(一)前向反向传播搭建
人工智能·pytorch·深度学习·大语言模型·梯度·梯度下降·反向传播
HUIMU_9 小时前
YOLOv5实战-GPU版本的pytorch虚拟环境配置
人工智能·pytorch·深度学习·yolo
猫天意10 小时前
【CVPR2023】奔跑而非行走:追求更高FLOPS以实现更快神经网络
人工智能·深度学习·神经网络·算法·机器学习·卷积神经网络
AI风老师10 小时前
深度学习入门:打好数学与机器学习基础,迈向AI进阶之路
人工智能·深度学习·机器学习