Server - PyTorch BFloat16 “TypeError: Got unsupported ScalarType BFloat16“ 解决方案

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://spike.blog.csdn.net/article/details/132665807

BFloat16 类型是 16 位的浮点数格式,可以用来加速深度学习的计算和存储。BFloat16 类型的特点是保留 32 位浮点数(float32)的 8 位指数部分,但是只有 8 位的有效数字部分(而不是 float32 的 24 位)。这样,BFloat16 类型,可以表示和 float32 类型相同的数值范围,但是精度会降低。BFloat16 类型的优势在于,可以减少内存占用和数据传输的开销,从而提高深度学习模型的训练和推理速度。同时,由于 BFloat16 类型的指数部分和 float32 类型一致,可以更好地处理梯度消失和梯度爆炸的问题,以及在低精度下保持数值稳定性。PyTorch 支持 BFloat16 类型的计算和存储。PyTorch 提供一些工具和方法来使用 BFloat16 类型进行混合精度训练和推理,例如 torch.bfloat16 数据类型,torch.cuda.amp 模块,torch.nn.BFloat16Module 类等。使用 BFloat16 类型进行混合精度训练和推理的基本思路是:对于计算密集型的操作,如卷积和矩阵乘法,使用 BFloat16 类型进行计算;对于其他的操作,如激活函数和归一化层,使用 float32 类型进行计算。这样可以平衡计算速度和精度损失。

在 PyTorch 使用 BFloat16 时,遇到 Bug,TypeError: Got unsupported ScalarType BFloat16,即:

bash 复制代码
File "[your file].py", line 38, in [function]
    reference_np = reference.detach().cpu().numpy()    
TypeError: Got unsupported ScalarType BFloat16

原因 PyTorch Version: 1.13.0 版本,不支持直接转换 BFloat16 格式, 在 detach() 之后,增加 to(torch.float),再转换 cpu(),即可:

python 复制代码
reference_np = reference.detach().to(torch.float).cpu().numpy()

参考:

相关推荐
小途软件5 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
AI街潜水的八角9 小时前
基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)
pytorch·深度学习·神经网络
大模型真好玩10 小时前
大模型训练全流程实战指南(一)——为什么要学习大模型训练?
人工智能·pytorch·python·大模型·deep learning
纪伊路上盛名在11 小时前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达
小途软件11 小时前
ssm327校园二手交易平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
bst@微胖子16 小时前
HuggingFace项目实战之分类任务实战
pytorch·深度学习·分类
小途软件16 小时前
基于深度学习的人脸检测算法研究
java·人工智能·pytorch·python·深度学习·语言模型
Francek Chen17 小时前
【自然语言处理】应用06:针对序列级和词元级应用微调BERT
人工智能·pytorch·深度学习·自然语言处理·bert
belldeep17 小时前
python:pyTorch 入门教程
pytorch·python·ai·torch
子夜江寒17 小时前
基于PyTorch的CBOW模型实现与词向量生成
pytorch·python