Server - PyTorch BFloat16 “TypeError: Got unsupported ScalarType BFloat16“ 解决方案

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://spike.blog.csdn.net/article/details/132665807

BFloat16 类型是 16 位的浮点数格式,可以用来加速深度学习的计算和存储。BFloat16 类型的特点是保留 32 位浮点数(float32)的 8 位指数部分,但是只有 8 位的有效数字部分(而不是 float32 的 24 位)。这样,BFloat16 类型,可以表示和 float32 类型相同的数值范围,但是精度会降低。BFloat16 类型的优势在于,可以减少内存占用和数据传输的开销,从而提高深度学习模型的训练和推理速度。同时,由于 BFloat16 类型的指数部分和 float32 类型一致,可以更好地处理梯度消失和梯度爆炸的问题,以及在低精度下保持数值稳定性。PyTorch 支持 BFloat16 类型的计算和存储。PyTorch 提供一些工具和方法来使用 BFloat16 类型进行混合精度训练和推理,例如 torch.bfloat16 数据类型,torch.cuda.amp 模块,torch.nn.BFloat16Module 类等。使用 BFloat16 类型进行混合精度训练和推理的基本思路是:对于计算密集型的操作,如卷积和矩阵乘法,使用 BFloat16 类型进行计算;对于其他的操作,如激活函数和归一化层,使用 float32 类型进行计算。这样可以平衡计算速度和精度损失。

在 PyTorch 使用 BFloat16 时,遇到 Bug,TypeError: Got unsupported ScalarType BFloat16,即:

bash 复制代码
File "[your file].py", line 38, in [function]
    reference_np = reference.detach().cpu().numpy()    
TypeError: Got unsupported ScalarType BFloat16

原因 PyTorch Version: 1.13.0 版本,不支持直接转换 BFloat16 格式, 在 detach() 之后,增加 to(torch.float),再转换 cpu(),即可:

python 复制代码
reference_np = reference.detach().to(torch.float).cpu().numpy()

参考:

相关推荐
悲喜自渡7213 小时前
Pytorch(无CPU搭建)+Jupyter
人工智能·pytorch·jupyter
没有不重的名么4 小时前
在Pytorch中使用Tensorboard可视化训练过程
人工智能·pytorch·python
意.远4 小时前
PyTorch卷积层填充(Padding)与步幅(Stride)详解及代码示例
人工智能·pytorch·python·深度学习
蹦蹦跳跳真可爱5898 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
Sherlock Ma15 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek
谦行19 小时前
工欲善其事,必先利其器—— PyTorch 深度学习基础操作
pytorch·深度学习·ai编程
开心快乐幸福一家人21 小时前
Spark-SQL与Hive集成及数据分析实践
人工智能·pytorch·深度学习
什么芮.1 天前
spark-streaming
pytorch·sql·spark·kafka·scala
小宋加油啊1 天前
深度学习小记(包括pytorch 还有一些神经网络架构)
pytorch·深度学习·神经网络
IT_Octopus1 天前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python