数仓问答篇(一)

数仓架构(即席查询)

总体来说,Hadoop架构在数据量较低的情况下,运行速度远不及MPP架构,但数据量一旦超过某个量级,Hadoop架构在吞吐量方面将非常有优势。有些大数据数据仓库产品也采用混合架构 ,以融合两者的优点,例如Impala、Presto等都是基于HDFS的MPP分析引擎,仅利用HDFS实现分区容错性,放弃MapReduce计算模型,在面向OLAP场景时可实现更好的性能,降低延迟。

MPP vs Hadoop架构 - 知乎

ClickHouse进行轻量化数仓搭建【计算引擎:Hive VS ClickHouse】

ClickHouse适合简单的DW之上的即席查询。而Spark由于其分布式特性,导致其任务启动时间很长,因此不适合实现即席查询,但是对于大数据量的join等复杂查询时具备非常大的优势。

ClickHouse的优化重点在如何提高单机的处理能力,而Spark的优化重点在于如何提高分布式的协作效率。

ClickHouse与Hive的区别,终于有人讲明白了-clickhouse与hive 区别

相关推荐
奥顺互联V1 小时前
深入理解 ThinkPHP:框架结构与核心概念详解
大数据·mysql·开源·php
郭源潮3452 小时前
Hadoop
大数据·hadoop·分布式
中科岩创2 小时前
中科岩创桥梁自动化监测解决方案
大数据·网络·物联网
百家方案3 小时前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
forestsea3 小时前
【Elasticsearch】分片与副本机制:优化数据存储与查询性能
大数据·elasticsearch·搜索引擎
开着拖拉机回家3 小时前
【Ambari】使用 Knox 进行 LDAP 身份认证
大数据·hadoop·gateway·ambari·ldap·knox
地球资源数据云3 小时前
全国30米分辨率逐年植被覆盖度(FVC)数据集
大数据·运维·服务器·数据库·均值算法
INFINI Labs3 小时前
Elasticsearch filter context 的使用原理
大数据·elasticsearch·jenkins·filter·querycache
Ahern_4 小时前
Oracle 普通表至分区表的分区交换
大数据·数据库·sql·oracle
李昊哲小课4 小时前
deepin 安装 kafka
大数据·分布式·zookeeper·数据分析·kafka