数仓问答篇(一)

数仓架构(即席查询)

总体来说,Hadoop架构在数据量较低的情况下,运行速度远不及MPP架构,但数据量一旦超过某个量级,Hadoop架构在吞吐量方面将非常有优势。有些大数据数据仓库产品也采用混合架构 ,以融合两者的优点,例如Impala、Presto等都是基于HDFS的MPP分析引擎,仅利用HDFS实现分区容错性,放弃MapReduce计算模型,在面向OLAP场景时可实现更好的性能,降低延迟。

MPP vs Hadoop架构 - 知乎

ClickHouse进行轻量化数仓搭建【计算引擎:Hive VS ClickHouse】

ClickHouse适合简单的DW之上的即席查询。而Spark由于其分布式特性,导致其任务启动时间很长,因此不适合实现即席查询,但是对于大数据量的join等复杂查询时具备非常大的优势。

ClickHouse的优化重点在如何提高单机的处理能力,而Spark的优化重点在于如何提高分布式的协作效率。

ClickHouse与Hive的区别,终于有人讲明白了-clickhouse与hive 区别

相关推荐
2501_930104043 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
健康平安的活着3 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎
念念01073 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
sunxinyu5 小时前
曲面/线 拟合gnuplot
大数据·线性回归·数据处理·数据拟合·二维三维空间数据
专注API从业者6 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
淡酒交魂8 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
mask哥8 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
TDengine (老段)8 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
livemetee8 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink
zhang988000010 小时前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark