Elasticsearch实战(五):Springboot实现Elasticsearch电商平台日志埋点与搜索热词

文章目录

系列文章索引

Elasticsearch实战(一):Springboot实现Elasticsearch统一检索功能
Elasticsearch实战(二):Springboot实现Elasticsearch自动汉字、拼音补全,Springboot实现自动拼写纠错
Elasticsearch实战(三):Springboot实现Elasticsearch搜索推荐
Elasticsearch实战(四):Springboot实现Elasticsearch指标聚合与下钻分析
Elasticsearch实战(五):Springboot实现Elasticsearch电商平台日志埋点与搜索热词

一、提取热度搜索

1、热搜词分析流程图

2、日志埋点

整合Log4j2

相比与其他的日志系统,log4j2丢数据这种情况少;disruptor技术,在多线程环境下,性能高于logback等10倍以上;利用jdk1.5并发的特性,减少了死锁的发生;

(1)排除logback的默认集成。

因为Spring Cloud 默认集成了logback, 所以首先要排除logback的集成,在pom.xml文件

xml 复制代码
<!--排除logback的默认集成 Spring Cloud 默认集成了logback-->
<dependency>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-web</artifactId>
	<exclusions>
		<exclusion>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-logging</artifactId>
		</exclusion>
	</exclusions>
</dependency>

(2)引入log4j2起步依赖

xml 复制代码
<!-- 引入log4j2起步依赖-->
<dependency>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-log4j2</artifactId>
</dependency>
<!-- log4j2依赖环形队列-->
<dependency>
	<groupId>com.lmax</groupId>
	<artifactId>disruptor</artifactId>
	<version>3.4.2</version>
</dependency>

(3)设置配置文件

如果自定义了文件名,需要在application.yml中配置

进入Nacos修改配置

yml 复制代码
logging:
	config: classpath:log4j2-dev.xml

(4)配置文件模板

xml 复制代码
<Configuration>
	<Appenders>
		<Socket name="Socket" host="172.17.0.225" port="4567">
			<JsonLayout compact="true" eventEol="true" />
		</Socket>
	</Appenders>
	<Loggers>
		<Root level="info">
			<AppenderRef ref="Socket"/>
		</Root>
	</Loggers>
</Configuration>

从配置文件中可以看到,这里使用的是Socket Appender来将日志打印的信息发送到Logstash。

注意了,Socket的Appender必须要配置到下面的Logger才能将日志输出到Logstash里!

另外这里的host是部署了Logstash服务端的地址,并且端口号要和你在Logstash里配置的一致才行。

(5)日志埋点

java 复制代码
private void getClientConditions(CommonEntity commonEntity, SearchSourceBuilder searchSourceBuilder) {
	//循环前端的查询条件
	for (Map.Entry<String, Object> m : commonEntity.getMap().entrySet()) {
		if (StringUtils.isNotEmpty(m.getKey()) && m.getValue() != null) {
			String key = m.getKey();
			String value = String.valueOf(m.getValue());
			//构造请求体中"query":{}部分的内容 ,QueryBuilders静态工厂类,方便构造
			queryBuilder
			searchSourceBuilder.query(QueryBuilders.matchQuery(key, value));
			logger.info("search for the keyword:" + value);
		}
	}
}

(6)创建索引

下面的索引存储用户输入的关键字,最终通过聚合的方式处理索引数据,最终将数据放到语料库

json 复制代码
PUT es-log/
{
    "mappings": {
        "properties": {
            "@timestamp": {
                "type": "date"
            },
            "host": {
                "type": "text"
            },
            "searchkey": {
                "type": "keyword"
            },
            "port": {
                "type": "long"
            },
            "loggerName": {
                "type": "text"
            }
        }
    }
}

3、数据落盘(logstash)

(1)配置Logstash.conf

连接logstash方式有两种

(1) 一种是Socket连接

(2)另外一种是gelf连接

json 复制代码
input {
    tcp {
        port => 4567
        codec => json
    }
}

filter {
#如果不包含search for the keyword则删除
    if [message] =~  "^(?!.*?search for the keyword).*$" {
        drop {}
  }
     mutate{
#移除不需要的列
        remove_field => ["threadPriority","endOfBatch","level","@version","threadId","tags","loggerFqcn","thread","instant"]
#对原始数据按照:分组,取分组后的搜索关键字
  split=>["message",":"]
                add_field => {
                        "searchkey" => "%{[message][1]}"
                }
#上面新增了searchkey新列,移除老的message列
 remove_field => ["message"]
           }
 }

# 输出部分
output {
    elasticsearch {
        # elasticsearch索引名
        index => "es-log"
        # elasticsearch的ip和端口号
        hosts => ["172.188.0.88:9200","172.188.0.89:9201","172.188.0.90:9202"]
    }
    stdout {
        codec => json_lines
    }
}

重启Logstash,对外暴露4567端口:

docker run --name logstash   -p 4567:4567 -v /usr/local/logstash/config/logstash.yml:/usr/share/logstash/config/logstash.yml   -v /usr/local/logstash/config/conf.d/:/usr/share/logstash/pipeline/   -v /usr/local/logstash/config/jars/mysql-connector-java-5.1.48.jar:/usr/share/logstash/logstash-core/lib/jars/mysql-connector-java-5.1.48.jar       --net czbkNetwork --ip 172.188.0.77 --privileged=true  -d  c2c1ac6b995b

(2)查询是否有数据

json 复制代码
GET es-log/_search
{
	"from": 0,
	"size": 200,
	"query": {
		"match_all": {}
	}
}

返回:
{
	"_index" : "es-log",
	"_type" : "_doc",
	"_id" : "s4sdPHEBfG2xXcKw2Qsg",
	"_score" : 1.0,
	"_source" : {
		"searchkey" : "华为全面屏",
		"port" : 51140,
		"@timestamp" : "2023-04-02T18:18:41.085Z",
		"host" : "192.168.23.1",
		"loggerName" :
		"com.service.impl.ElasticsearchDocumentServiceImpl"
	}
}

(3)执行API全文检索

参数:

json 复制代码
{
	"pageNumber": 1,
	"pageSize": 3,
	"indexName": "product_list_info",
	"highlight": "productname",
	"map": {
		"productname": "小米"
	}
}

二、热度搜索OpenAPI

1、聚合

获取es-log索引中的文档数据并对其进行分组,统计热搜词出现的频率,根据频率获取有效数据。

2、DSL实现

field:查询的列,keyword类型

min_doc_count:热度大于1次的

order:热度排序

size:取出前几个

per_count:"自定义聚合名

json 复制代码
POST es-log/_search?size=0
{
    "aggs": {
        "result": {
            "terms": {
                "field": "searchkey",
                "min_doc_count": 5,
                "size": 2,
                "order": {
                    "_count": "desc"
                }
            }
        }
    }
}

结果:
{
    "took": 13,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 40,
            "relation": "eq"
        },
        "max_score": null,
        "hits": []
    },
    "aggregations": {
        "per_count": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 12,
            "buckets": [
                {
                    "key": "阿迪达斯外套",
                    "doc_count": 14
                },
                {
                    "key": "华为",
                    "doc_count": 8
                }
            ]
        }
    }
}

3、 OpenAPI查询参数设计

java 复制代码
/*
 * @Description: 获取搜索热词
 * @Method: hotwords
 * @Param: [commonEntity]
 * @Update:
 * @since: 1.0.0
 * @Return: java.util.List<java.lang.String>
 *
 */
public Map<String, Long> hotwords(CommonEntity commonEntity) throws Exception {
    //定义返回数据
    Map<String, Long> map = new LinkedHashMap<String, Long>();
    //执行查询
    SearchResponse result = getSearchResponse(commonEntity);
    //这里的自定义的分组别名(get里面)key当一个的时候为动态获取
    Terms packageAgg = result.getAggregations().get(result.getAggregations().getAsMap().entrySet().iterator().next().getKey());
    for (Terms.Bucket entry : packageAgg.getBuckets()) {
        if (entry.getKey() != null) {
            // key为分组的字段
            String key = entry.getKey().toString();
            // count为每组的条数
            Long count = entry.getDocCount();
            map.put(key, count);
        }
    }

    return map;
}
/*
 * @Description: 查询公共调用,参数模板化
 * @Method: getSearchResponse
 * @Param: [commonEntity]
 * @Update:
 * @since: 1.0.0
 * @Return: org.elasticsearch.action.search.SearchResponse
 *
 */
private SearchResponse getSearchResponse(CommonEntity commonEntity) throws Exception {
    //定义查询请求
    SearchRequest searchRequest = new SearchRequest();
    //指定去哪个索引查询
    searchRequest.indices(commonEntity.getIndexName());
    //构建资源查询构建器,主要用于拼接查询条件
    SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
    //将前端的dsl查询转化为XContentParser
    XContentParser parser = SearchTools.getXContentParser(commonEntity);
    //将parser解析成功查询API
    sourceBuilder.parseXContent(parser);
    //将sourceBuilder赋给searchRequest
    searchRequest.source(sourceBuilder);
    //执行查询
    SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
    return response;
}

调用hotwords方法参数:

json 复制代码
{
    "indexName": "es-log",
    "map": {
        "aggs": {
            "per_count": {
                "terms": {
                    "field": "searchkey",
                    "min_doc_count": 5,
                    "size": 2,
                    "order": {
                        "_count": "desc"
                    }
                }
            }
        }
    }
}

field表示需要查找的列

min_doc_count:热搜词在文档中出现的次数

size表示本次取出多少数据

order表示排序(升序or降序)

相关推荐
苹果醋32 小时前
Java8->Java19的初步探索
java·运维·spring boot·mysql·nginx
Wx-bishekaifayuan2 小时前
django电商易购系统-计算机设计毕业源码61059
java·spring boot·spring·spring cloud·django·sqlite·guava
customer082 小时前
【开源免费】基于SpringBoot+Vue.JS周边产品销售网站(JAVA毕业设计)
java·vue.js·spring boot·后端·spring cloud·java-ee·开源
Yaml43 小时前
智能化健身房管理:Spring Boot与Vue的创新解决方案
前端·spring boot·后端·mysql·vue·健身房管理
LuckyLay3 小时前
Spring学习笔记_27——@EnableLoadTimeWeaving
java·spring boot·spring
佳佳_4 小时前
Spring Boot 应用启动时打印配置类信息
spring boot·后端
Elastic 中国社区官方博客5 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
程序媛小果5 小时前
基于java+SpringBoot+Vue的宠物咖啡馆平台设计与实现
java·vue.js·spring boot
掘金-我是哪吒5 小时前
微服务mysql,redis,elasticsearch, kibana,cassandra,mongodb, kafka
redis·mysql·mongodb·elasticsearch·微服务
Lovely_red_scarf5 小时前
Jenkins系列
jenkins