线性代数的学习和整理21,向量的模,矩阵的模,矩阵的模和行列式比较(未完成)

目录

[1 模的定义](#1 模的定义)

[2 向量的模是距离](#2 向量的模是距离)

[2.1 向量的模的定义](#2.1 向量的模的定义)

[2.2 向量的模的计算公式](#2.2 向量的模的计算公式)

[3 矩阵的模](#3 矩阵的模)

[3.1 矩阵/向量组的模的定义](#3.1 矩阵/向量组的模的定义)

[3.2 矩阵的模的公式](#3.2 矩阵的模的公式)

[4 矩阵的模和行列式的关系?](#4 矩阵的模和行列式的关系?)


1 模的定义

  • 模,又称为范数。
  • 范数,是具有"长度"概念的函数。
  • 在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。
  • 半范数可以为非零的矢量赋予零长度。
  • 范数常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
  • 在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。

扩展资料

矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:

。所以矩阵范数通常也称为相容范数。

如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。

注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

2 向量的模是距离

2.1 向量的模的定义

  • 向量的模,数学术语,norm 或 module
  • 向量 AB(AB上面有→)的长度叫做向量的模
  • 记作|AB|,|AB|(AB上有→)
  • 或|a|,|a|(a上有→) 。

2.2 向量的模的计算公式

  • 向量的模,其实就是欧氏距离。但不是曼哈顿距离

从公式看,确实就是向量在空间的长度,也就是欧氏距离

3 矩阵的模

3.1 矩阵/向量组的模的定义

  • 矩阵的模也是矩阵的范数
  • 简单来说就是矩阵中每个元素的平方和再开方。

3.2 矩阵的模的公式

简单来说就是矩阵中每个元素的平方和再开方。

矩阵的模难道是面积?

从公式看,矩阵的模?是个啥呢?几何意义?

4 矩阵的模和行列式的关系?

向量的模,欧氏距离

矩阵的模,矩阵中每个元素的平方和再开方。

结合下,行列式是面积的变化比例

相关推荐
非概念4 分钟前
stm32学习笔记----51单片机和stm32单片机的区别
笔记·stm32·单片机·学习·51单片机
无敌最俊朗@1 小时前
stm32学习之路——八种GPIO口工作模式
c语言·stm32·单片机·学习
EterNity_TiMe_2 小时前
【论文复现】STM32设计的物联网智能鱼缸
stm32·单片机·嵌入式硬件·物联网·学习·性能优化
L_cl2 小时前
Python学习从0到1 day28 Python 高阶技巧 ⑤ 多线程
学习
前端SkyRain2 小时前
后端Node学习项目-用户管理-增删改查
后端·学习·node.js
提笔惊蚂蚁2 小时前
结构化(经典)软件开发方法: 需求分析阶段+设计阶段
后端·学习·需求分析
DDDiccc2 小时前
JAVA学习日记(十五) 数据结构
数据结构·学习
腾科张老师4 小时前
为什么要使用Ansible实现Linux管理自动化?
linux·网络·学习·自动化·ansible
tao_sc6 小时前
luckfox-pico-max学习记录
学习
zx_zx_1236 小时前
多态的学习
c++·学习