类ChatGPT大模型LLaMA及其微调模型

1.LLaMA

LLaMA的模型架构:RMSNorm/SwiGLU/RoPE/Transfor
mer/1-1.4T tokens

1.1对transformer子层的输入归一化

对每个transformer子层的输入使用RMSNorm进行归一化,计算如下:

1.2使用SwiGLU替换ReLU

Relu激活函数】Relu(x) = max(0,x) 。

GLU激活函数】GLU(x) = x 与 sigmoid(g(x)) 对应元素相乘 。

LLaMA采用SwiGLU替换了原有的ReLU,SwiGLU的作用机制是根据输入数据的特性,通过学习到的参数自动调整信息流动的路径,具体是采用SwiGLU的Feedforward Neural Network (简称FNN,是一种使用可学习的门控机制的前馈神经网络)。xV相当于门控值,控制Swish输出的多少。


1.3位置编码

在位置编码方面,将绝对位置嵌入的方法变为相对位置嵌入。

1.4优化器的设计

使用AdamW优化器进行训练,使用余弦学习率的方式根据模型的大小动态的改变学习率和批次大小。

2.对LLaMA进行微调

2.1 Stanford Alpaca

结合英文语料通过Self Instruct的方式微调LLaMA 7B,具体通过52K的指令数据对LLaMA进行指令微调。其中52k的数据包括:指令、输入、输出。

①self-instruct方式

1.首选人工设计出175个种子数据集,包括指令、输入、输出。

2.使用GPT3对应的API使用种子数据集的上下文实例来生成更多新的指令。

3.使用生成的指令判断是否为分类任务。

4.使用模型生成实例。

5.生成输入和输出数据,过滤点低质量或者相似度高的数据。

6.经过过滤后的数据放入种子数据集中。

生成52K数据的完整代码:链接

②使用生成的指令数据微调LLaMA

2.2 Alpaca-LoRA

LoRA提出用两个小矩阵近似一个大矩阵,先降维(减小计算量)后升维(维持维度不变)。具体来说是固定原始模型的参数,只训练降维矩阵A与升维矩阵B。最后用原始模型参数与B矩阵相加。

LoRA层主要实现了两分支通路,一条分支为已被冻结weight参数的原始结构,另一条分支为新引入的降维再升维线性层。

2.ChatLLaMA:LLaMA的RLHF版

3.DeepSpeed Chat

具备基本生成能力的基座模型

有监督微调模型(SFT)

奖励模型(RM)

SFT、actor、RM、Critic

相关推荐
naruto_lnq21 分钟前
Python日志记录(Logging)最佳实践
jvm·数据库·python
yuankoudaodaokou22 分钟前
高帧率扫描如何重塑动态三维扫描与思看科技300fps解决方案
python·科技
rainbow688924 分钟前
Python零基础到精通全攻略
python
zhangfeng113324 分钟前
大模型微调主要框架 Firefly vs LLaMA Factory 全方位对比表
人工智能·语言模型·开源·llama
毕设源码-朱学姐24 分钟前
【开题答辩全过程】以 基于python网络安全知识在线答题系统为例,包含答辩的问题和答案
开发语言·python·web安全
2301_7657031425 分钟前
Python异步编程入门:Asyncio库的使用
jvm·数据库·python
Dxy123931021630 分钟前
Python判断MySQL表是否存在,不存在则创建
python·mysql·adb
BYSJMG1 小时前
2026计算机毕设推荐:基于大数据的车辆二氧化碳排放量可视化分析系统
大数据·vue.js·python·mysql·django·课程设计
Pyeako1 小时前
opencv计算机视觉--DNN模块实现风格迁移
python·opencv·计算机视觉·pycharm·dnn·预处理·风格迁移
m0_706653231 小时前
用Python创建一个Discord聊天机器人
jvm·数据库·python