ChatGLM学习


前置知识补充

双流自注意力

Two-stream self-attention mechanism(双流自注意机制)是一种用于自然语言处理任务的注意力机制。它是基于自注意力机制(self-attention)的扩展,通过引入两个独立的注意力流来处理不同类型的信息。

  • 在传统的自注意力机制中,输入序列中的每个位置都会计算一个注意力权重,用于对其他位置的信息进行加权聚合。而在双流自注意力机制中,会引入两个注意力流,分别用于处理不同类型的信息。

  • 双流自注意力,一个注意力流用于处理位置信息(position-based),另一个注意力流用于处理内容信息(content-based)。位置信息可以帮助模型捕捉序列中的顺序和结构,而内容信息可以帮助模型理解不同位置的语义关联

    • 具体来说,双流自注意力机制会为每个注意力流维护一个独立的注意力矩阵,用于计算注意力权重。然后,通过将两个注意力流的输出进行加权融合,得到最终的注意力表示。
    • 通过引入两个注意力流,双流自注意力机制可以更好地捕捉不同类型信息之间的关系,提高模型在语义理解和推理任务中的性能。它在机器翻译、文本分类、问答系统等任务中都有应用,并取得了一定的效果提升。

Transformer修改

层归一化是一种归一化技术,用于在网络的每一层对输入进行归一化处理。它可以帮助网络更好地处理梯度消失和梯度爆炸问题,提高模型的训练效果和泛化能力。

残差链接是一种跳跃连接技术,通过将输入直接添加到网络的输出中,使得网络可以学习残差信息。这有助于网络更好地传递梯度和学习深层特征,提高模型的训练效果和收敛速度。

在一般情况下,层归一化应该在残差链接之前应用。这是因为层归一化对输入进行归一化处理,而残差链接需要将输入直接添加到网络的输出中。如果将残差链接放在层归一化之前,会导致输入的归一化被破坏,从而影响模型的训练和性能。


关键术语

MLM :条件独立性假设,预测每个mask的时候是并行的,没有考虑mask之间的关系
Mask :一个单词一个mask,mask可以知道长度信息
Span:几个单词(或者更多个)一起mask掉,span不知道长度信息

把标签映射成词语,进行分类:

  • 标成mask,放在最后一个位置,X和Y可以形成一个流畅的语句,接近于自然语言

GLM

GLM是一种基于Transformer的语言模型,它以自回归空白填充为训练目标。

对于一个文本序列 x = [ x 1 , ⋅ ⋅ ⋅ , x n ] x=[x1, · · · ,xn] x=[x1,⋅⋅⋅,xn],从其中采样文本span{s1,· · ·,sm},其中每个si表示连续令牌的跨度,并用单个掩码替换si,要求模型对它们进行自回归恢复。

与GPT类模型不同的是,它在不Mask的位置使用双向注意力,因此它混合了两种Mask,以支持理解和生成:

[MASK] :句子中的短空白,长度加总到输入的某一部分
[gMASK]:随机长度的长空白,加在提供前缀上下文的句子末尾


GLM130B

1)架构选择

通用语言模型GLM

组件改进:旋转位置编码、DeepNorm、GeGLU

2)工程实现

并行策略:数据、张量、流水线3D并行

多平台高效适配

3)训练策略改进

梯度爆炸的问题,采用了嵌入层梯度缩减策略

解决注意力数值溢出问题,采用了FP32的softmax计算策略,训练稳定性有提升


相关推荐
艾莉丝努力练剑34 分钟前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
人生游戏牛马NPC1号2 小时前
学习 Flutter (三):玩安卓项目实战 - 上
android·学习·flutter
没有羊的王K5 小时前
SSM框架学习——day1
java·学习
林林要一直努力7 小时前
AOSP Settings模块问题初窥
android·学习·bug·android studio
余大侠在劈柴10 小时前
pdf.js 开发指南:在 Web 项目中集成 PDF 预览功能
前端·javascript·学习·pdf
有谁看见我的剑了?12 小时前
iperf3 网络带宽测试工具学习
学习·测试工具
老神在在00112 小时前
SpringMVC2
java·前端·学习·spring·java-ee
老神在在00112 小时前
SpringMVC3
java·前端·学习·spring·java-ee
Pocker_Spades_A15 小时前
TextIn:文档全能助手,让学习效率飙升的良心软件~
学习·textln
我.佛.糍.粑16 小时前
Shusen Wang推荐系统学习 --召回 矩阵补充 双塔模型
人工智能·学习·机器学习·矩阵·推荐算法