特征值,特征向量,SVD分解,PCD分解

特征值,特征向量:

对于n阶方阵A,在A张成的空间里,存在非零向量v, 该向量转换到A张成的空间时,方向不变,大小变为λ倍。

① Av = λv

变换一下:

② (A - λI)v = 0

对于A向量,特征向量存在非零解的充要条件是下面的行列式值为0:

det(A - λI) = 0

计算出特征值λ。

λ可能有多个值,分别将每个值代入公式②,计算向量v,v是个表达式,也就是可以是多个向量。

向量v只会被伸缩而不会改变方向。代入任意一个值,得到一个特征值λ的特征向量v。

  • 特征值性质:

特征值λ相加 = 矩阵迹相加

特征值λ相乘 = 矩阵的行列式

A矩阵的特征值分解:

其中W为特征向量组成的矩阵,Σ为对应特征值组成的对角矩阵


主成分分析 PCA

主成分可以看作是数据的新坐标系中的基向量,将原始数据投影到这些主成分上,可以实现数据降维。

步骤:

  1. 将原点放到数据的中心位置。
  2. 找到方差最大的方向

也就是:先将坐标轴的原点移动到数据的中心,再将坐标系旋转到方差最大的方向。这样大多数数据被压缩到一个低维度的X轴上。

关键步骤是找到方差最大的方向,假设手里的数据是D',符合正态分布的数据是D:

手上的数据D'的协方差:

找出旋转矩阵R就可以知道坐标轴应该旋转的角度

将C'进行特征分解得到:

C' = WΣW(-1)

可见R = W

W为C'的特征向量组成的矩阵。

L值为特征值组成的矩阵,为S矩阵在两个方向拉伸倍数的平方,为旋转后的坐标系下,数据的方差。此时在该坐标系下方差最小。


奇异值分解 SVD

任意一个形状的矩阵M,可以分解成如下的形式:

  • M 的形状为m*n,U的形状为m*m的方阵,V为n*n的方阵,Σ为m*n形状矩阵。
  • U 是 得到的结果矩阵的特征向量组成的m*m的方阵
  • Σ对角为奇异值,该值的平方等于特征值,而且依次从大到小排列。
  • V 是 得到的结果矩阵的特征向量组成的n*n的方阵,公式用的是其转置,numpy中提供的函数:np.linalg.svd(),给出的结果也是转置后的结果。
    V也是PCA主成分的方向
  • U和V都是酉矩阵,即满足:

求解步骤:

相关推荐
青云交6 分钟前
Java 大视界 -- Java 大数据机器学习模型在电商评论情感分析与产品口碑优化中的应用
机器学习·自然语言处理·lstm·情感分析·java 大数据·电商评论·产品口碑
XUA19 分钟前
如何在服务器上使用Codex
人工智能
咚咚王者28 分钟前
人工智能之数据分析 Matplotlib:第三章 基本属性
人工智能·数据分析·matplotlib
骑自行车的码农34 分钟前
🍂 React DOM树的构建原理和算法
javascript·算法·react.js
Mintopia1 小时前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown1 小时前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人1 小时前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计
CoderYanger1 小时前
优选算法-优先级队列(堆):75.数据流中的第K大元素
java·开发语言·算法·leetcode·职场和发展·1024程序员节
希望有朝一日能如愿以偿1 小时前
力扣每日一题:能被k整除的最小整数
数据结构·算法·leetcode
Controller-Inversion1 小时前
力扣53最大字数组和
算法·leetcode·职场和发展