特征值,特征向量,SVD分解,PCD分解

特征值,特征向量:

对于n阶方阵A,在A张成的空间里,存在非零向量v, 该向量转换到A张成的空间时,方向不变,大小变为λ倍。

① Av = λv

变换一下:

② (A - λI)v = 0

对于A向量,特征向量存在非零解的充要条件是下面的行列式值为0:

det(A - λI) = 0

计算出特征值λ。

λ可能有多个值,分别将每个值代入公式②,计算向量v,v是个表达式,也就是可以是多个向量。

向量v只会被伸缩而不会改变方向。代入任意一个值,得到一个特征值λ的特征向量v。

  • 特征值性质:

特征值λ相加 = 矩阵迹相加

特征值λ相乘 = 矩阵的行列式

A矩阵的特征值分解:

其中W为特征向量组成的矩阵,Σ为对应特征值组成的对角矩阵


主成分分析 PCA

主成分可以看作是数据的新坐标系中的基向量,将原始数据投影到这些主成分上,可以实现数据降维。

步骤:

  1. 将原点放到数据的中心位置。
  2. 找到方差最大的方向

也就是:先将坐标轴的原点移动到数据的中心,再将坐标系旋转到方差最大的方向。这样大多数数据被压缩到一个低维度的X轴上。

关键步骤是找到方差最大的方向,假设手里的数据是D',符合正态分布的数据是D:

手上的数据D'的协方差:

找出旋转矩阵R就可以知道坐标轴应该旋转的角度

将C'进行特征分解得到:

C' = WΣW(-1)

可见R = W

W为C'的特征向量组成的矩阵。

L值为特征值组成的矩阵,为S矩阵在两个方向拉伸倍数的平方,为旋转后的坐标系下,数据的方差。此时在该坐标系下方差最小。


奇异值分解 SVD

任意一个形状的矩阵M,可以分解成如下的形式:

  • M 的形状为m*n,U的形状为m*m的方阵,V为n*n的方阵,Σ为m*n形状矩阵。
  • U 是 得到的结果矩阵的特征向量组成的m*m的方阵
  • Σ对角为奇异值,该值的平方等于特征值,而且依次从大到小排列。
  • V 是 得到的结果矩阵的特征向量组成的n*n的方阵,公式用的是其转置,numpy中提供的函数:np.linalg.svd(),给出的结果也是转置后的结果。
    V也是PCA主成分的方向
  • U和V都是酉矩阵,即满足:

求解步骤:

相关推荐
行走的小派4 小时前
引爆AI智能体时代!OPi 6Plus全面适配OpenClaw
人工智能
云边有个稻草人4 小时前
CANN:解构AIGC底层算力,ops-nn驱动神经网络算子加速
人工智能·神经网络·aigc·cann
爱吃大芒果4 小时前
CANN神经网络算子库设计思路:ops-nn项目的工程化实现逻辑
人工智能·深度学习·神经网络
weixin_499771554 小时前
C++中的组合模式
开发语言·c++·算法
人工智能培训5 小时前
具身智能如何让智能体理解物理定律?
人工智能·多模态学习·具身智能·ai培训·人工智能工程师·物理定律
lili-felicity5 小时前
CANN加速Stable Diffusion文生图推理:从UNet优化到内存复用
人工智能·aigc
哈__5 小时前
CANN加速语音合成TTS推理:声学模型与声码器优化
人工智能
哈__5 小时前
CANN加速VAE变分自编码器推理:潜在空间重构与编码解码优化
人工智能·深度学习·重构
美狐美颜SDK开放平台5 小时前
多终端适配下的人脸美型方案:美颜SDK工程开发实践分享
人工智能·音视频·美颜sdk·直播美颜sdk·视频美颜sdk
哈__5 小时前
CANN加速Image Captioning图像描述生成:视觉特征提取与文本生成优化
人工智能