【简介】 Faster RCNN[7]是第一个端到端,最接近于实时性能的深度学习检测算法,该网络的主要创新点就是提出了区域选择网络用于申城候选框,能几大提升检测框的生成速度。该网络首先输入图像到卷积网络中,生成该图像的特征映射。在特征映射上应用Region Proposal Network,返回object proposals和相应分数。应用Rol池化层,将所有proposals修正到同样尺寸。最后,将proposals传递到完全连接层,生成目标物体的边界框。
【性能】 该网络在当时VOC-07,VOC-12和COCO数据集上实现了SOTA精度,其中COCO mAP@.5=42.7%, COCO mAP@[.5,.95]=21.9%, VOC07 mAP=73.2%, VOC12 mAP=70.4%, 17fps with ZFNet
【不足】 虽然Faster RCNN的精度更高,速度更快,也非常接近于实时性能,但它在后续的检测阶段中仍存在一些计算冗余;除此之外,如果IOU阈值设置的低,会引起噪声检测的问题,如果IOU设置的高,则会引起过拟合。