sklearn中make_blobs方法:聚类数据生成器

sklearn中make_blobs()方法参数:

  • n_samples:表示数据样本点个数,默认值100

  • n_features:是每个样本的特征(或属性)数,也表示数据的维度,默认值是2。默认为 2 维数据,测试选取 2 维数据也方便进行可视化展示。

  • centers:表示类别数(标签的种类数),默认值3

  • cluster_std表示每个类别的方差,例如我们希望生成2类数据,其中一类比- 另一类具有更大的方差,可以将cluster_std设置为[1.0,3.0],浮点数或者浮点数序列,默认值1.0

  • center_box:中心确定之后的数据边界,默认值(-10.0, 10.0)

  • shuffle :将数据进行洗乱,默认值是True

  • random_state:官网解释是随机生成器的种子,可以固定生成的数据,给定数之后,每次生成的数据集就是固定的。

csharp 复制代码
X, y = make_blobs(n_samples=100, 
                  n_features=2,
                  centers=4, 
                  cluster_std=1.0, 
                  center_box=(-10.0, 10.0), 
                  shuffle=True, 
                  random_state=47)
plt.figure(figsize=(4, 3))
plt.scatter(X[:,0],X[:,1],c=y)
相关推荐
不惑_21 分钟前
通俗理解经典CNN架构:VGGNet
人工智能·神经网络·cnn
没学上了24 分钟前
MNIST
人工智能
audyxiao0011 小时前
人工智能顶级期刊PR论文解读|HCRT:基于相关性感知区域的混合网络,用于DCE-MRI图像中的乳腺肿瘤分割
网络·人工智能·智慧医疗·肿瘤分割
零售ERP菜鸟1 小时前
IT价值证明:从“成本中心”到“增长引擎”的确定性度量
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
叫我:松哥1 小时前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
童话名剑2 小时前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技2 小时前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
吃茄子的猫8 小时前
quecpython中&的具体含义和使用场景
开发语言·python
珠海西格电力8 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃8 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习